2023-06-28 20:18:56 +09:00

336 lines
11 KiB
Python

from __future__ import annotations
import io
import os
from urllib.request import Request, urlopen
from modal import Image, Mount, Secret, Stub, method
from modal.cls import ClsMixin
BASE_CACHE_PATH = "/vol/cache"
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
BASE_CACHE_PATH_TEXTUAL_INVERSION = "/vol/cache/textual_inversion"
def download_files(urls, file_names, file_path):
"""
Download files.
"""
file_names = file_names.split(",")
urls = urls.split(",")
for file_name, url in zip(file_names, urls):
req = Request(url, headers={"User-Agent": "Mozilla/5.0"})
downloaded = urlopen(req).read()
dir_names = os.path.join(file_path, file_name)
os.makedirs(os.path.dirname(dir_names), exist_ok=True)
with open(dir_names, mode="wb") as f:
f.write(downloaded)
def download_models():
"""
Downloads the model from Hugging Face and saves it to the cache path using
diffusers.StableDiffusionPipeline.from_pretrained().
"""
import diffusers
hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
model_repo_id = os.environ["MODEL_REPO_ID"]
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
vae = diffusers.AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse",
use_auth_token=hugging_face_token,
cache_dir=cache_path,
)
vae.save_pretrained(cache_path, safe_serialization=True)
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
model_repo_id,
use_auth_token=hugging_face_token,
cache_dir=cache_path,
)
pipe.save_pretrained(cache_path, safe_serialization=True)
def build_image():
"""
Build the Docker image.
"""
download_models()
if os.environ["LORA_NAMES"] != "":
download_files(
os.getenv("LORA_DOWNLOAD_URLS"),
os.getenv("LORA_NAMES"),
BASE_CACHE_PATH_LORA,
)
if os.environ["TEXTUAL_INVERSION_NAMES"] != "":
download_files(
os.getenv("TEXTUAL_INVERSION_DOWNLOAD_URLS"),
os.getenv("TEXTUAL_INVERSION_NAMES"),
BASE_CACHE_PATH_TEXTUAL_INVERSION,
)
stub_image = Image.from_dockerfile(
path="./Dockerfile",
context_mount=Mount.from_local_file("./requirements.txt"),
).run_function(
build_image,
secrets=[Secret.from_dotenv(__file__)],
)
stub = Stub("stable-diffusion-cli")
stub.image = stub_image
@stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)])
class StableDiffusion(ClsMixin):
"""
A class that wraps the Stable Diffusion pipeline and scheduler.
"""
def __enter__(self):
import diffusers
import torch
self.cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
if os.path.exists(self.cache_path):
print(f"The directory '{self.cache_path}' exists.")
else:
print(f"The directory '{self.cache_path}' does not exist. Download models...")
download_models()
torch.backends.cuda.matmul.allow_tf32 = True
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
self.cache_path,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
)
# TODO: Add support for other schedulers.
self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
# self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
self.cache_path,
subfolder="scheduler",
)
if os.environ["USE_VAE"] == "true":
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
self.cache_path,
subfolder="vae",
)
self.pipe.to("cuda")
if os.environ["LORA_NAMES"] != "":
names = os.environ["LORA_NAMES"].split(",")
urls = os.environ["LORA_DOWNLOAD_URLS"].split(",")
for name, url in zip(names, urls):
path = os.path.join(BASE_CACHE_PATH_LORA, name)
if os.path.exists(path):
print(f"The directory '{path}' exists.")
else:
print(f"The directory '{path}' does not exist. Download it...")
download_files(url, name, BASE_CACHE_PATH_LORA)
self.pipe.load_lora_weights(".", weight_name=path)
if os.environ["TEXTUAL_INVERSION_NAMES"] != "":
names = os.environ["TEXTUAL_INVERSION_NAMES"].split(",")
urls = os.environ["TEXTUAL_INVERSION_DOWNLOAD_URLS"].split(",")
for name, url in zip(names, urls):
path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, name)
if os.path.exists(path):
print(f"The directory '{path}' exists.")
else:
print(f"The directory '{path}' does not exist. Download it...")
download_files(url, name, BASE_CACHE_PATH_TEXTUAL_INVERSION)
self.pipe.load_textual_inversion(path)
self.pipe.enable_xformers_memory_efficient_attention()
@method()
def count_token(self, p: str, n: str) -> int:
"""
Count the number of tokens in the prompt and negative prompt.
"""
from transformers import CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained(
self.cache_path,
subfolder="tokenizer",
)
token_size_p = len(tokenizer.tokenize(p))
token_size_n = len(tokenizer.tokenize(n))
token_size = token_size_p
if token_size_p <= token_size_n:
token_size = token_size_n
max_embeddings_multiples = 1
max_length = tokenizer.model_max_length - 2
if token_size > max_length:
max_embeddings_multiples = token_size // max_length + 1
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
return max_embeddings_multiples
@method()
def run_inference(
self,
prompt: str,
n_prompt: str,
height: int = 512,
width: int = 512,
samples: int = 1,
batch_size: int = 1,
steps: int = 30,
seed: int = 1,
upscaler: str = "",
use_face_enhancer: bool = False,
use_hires_fix: bool = False,
) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import torch
max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
generator = torch.Generator("cuda").manual_seed(seed)
with torch.inference_mode():
with torch.autocast("cuda"):
base_images = self.pipe.text2img(
prompt * batch_size,
negative_prompt=n_prompt * batch_size,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=7.5,
max_embeddings_multiples=max_embeddings_multiples,
generator=generator,
).images
if upscaler != "":
upscaled = self.upscale(
base_images=base_images,
half_precision=False,
tile=700,
upscaler=upscaler,
use_face_enhancer=use_face_enhancer,
use_hires_fix=use_hires_fix,
)
base_images.extend(upscaled)
if use_hires_fix:
torch.cuda.empty_cache()
for img in upscaled:
with torch.inference_mode():
with torch.autocast("cuda"):
hires_fixed = self.pipe.img2img(
prompt=prompt * batch_size,
negative_prompt=n_prompt * batch_size,
num_inference_steps=steps,
strength=0.3,
guidance_scale=7.5,
max_embeddings_multiples=max_embeddings_multiples,
generator=generator,
image=img,
).images
base_images.extend(hires_fixed)
torch.cuda.empty_cache()
image_output = []
for image in base_images:
with io.BytesIO() as buf:
image.save(buf, format="PNG")
image_output.append(buf.getvalue())
return image_output
@method()
def upscale(
self,
base_images: list[Image.Image],
half_precision: bool = False,
tile: int = 0,
tile_pad: int = 10,
pre_pad: int = 0,
upscaler: str = "",
use_face_enhancer: bool = False,
use_hires_fix: bool = False,
) -> list[Image.Image]:
"""
Upscales the given images using the given model.
https://github.com/xinntao/Real-ESRGAN
"""
import numpy
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from realesrgan import RealESRGANer
from tqdm import tqdm
model_name = upscaler
if model_name == "RealESRGAN_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRNet_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x4plus_anime_6B":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x2plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
else:
raise NotImplementedError("Model name not supported")
upsampler = RealESRGANer(
scale=netscale,
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
dni_weight=None,
model=upscale_model,
tile=tile,
tile_pad=tile_pad,
pre_pad=pre_pad,
half=half_precision,
gpu_id=None,
)
from gfpgan import GFPGANer
if use_face_enhancer:
face_enhancer = GFPGANer(
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
upscale=netscale,
arch="clean",
channel_multiplier=2,
bg_upsampler=upsampler,
)
torch.cuda.empty_cache()
upscaled_imgs = []
with tqdm(total=len(base_images)) as progress_bar:
for img in base_images:
img = numpy.array(img)
if use_face_enhancer:
_, _, enhance_result = face_enhancer.enhance(
img,
has_aligned=False,
only_center_face=False,
paste_back=True,
)
else:
enhance_result, _ = upsampler.enhance(img)
upscaled_imgs.append(Image.fromarray(enhance_result))
progress_bar.update(1)
torch.cuda.empty_cache()
return upscaled_imgs