2024-11-02 17:23:41 +09:00

179 lines
6.2 KiB
Python

import os
from abc import ABC, abstractmethod
import diffusers
from modal import App, Image, Mount, Secret
BASE_CACHE_PATH = "/vol/cache"
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
BASE_CACHE_PATH_TEXTUAL_INVERSION = "/vol/cache/textual_inversion"
BASE_CACHE_PATH_CONTROLNET = "/vol/cache/controlnet"
BASE_CACHE_PATH_UPSCALER = "/vol/cache/upscaler"
class StableDiffusionCLISetupInterface(ABC):
@abstractmethod
def download_model(self):
pass
class StableDiffusionCLISetupSDXL(StableDiffusionCLISetupInterface):
def __init__(self, config: dict, token: str):
if config.get("version") != "sdxl":
raise ValueError("Invalid version. Must be 'sdxl'.")
if config.get("model") is None:
raise ValueError("Model is required. Please provide a model in config.yml.")
self.__model_name: str = config["model"]["name"]
self.__model_url: str = config["model"]["url"]
self.__token: str = token
def download_model(self) -> None:
cache_path = os.path.join(BASE_CACHE_PATH, self.__model_name)
pipe = diffusers.StableDiffusionXLPipeline.from_single_file(
pretrained_model_link_or_path=self.__model_url,
use_auth_token=self.__token,
cache_dir=cache_path,
)
pipe.save_pretrained(cache_path, safe_serialization=True)
class StableDiffusionCLISetupSD15(StableDiffusionCLISetupInterface):
def __init__(self, config: dict, token: str):
if config.get("version") != "sd15":
raise ValueError("Invalid version. Must be 'sd15'.")
if config.get("model") is None:
raise ValueError("Model is required. Please provide a model in config.yml.")
self.__model_name: str = config["model"]["name"]
self.__model_url: str = config["model"]["url"]
self.__token: str = token
def download_model(self) -> None:
cache_path = os.path.join(BASE_CACHE_PATH, self.__model_name)
pipe = diffusers.StableDiffusionPipeline.from_single_file(
pretrained_model_link_or_path=self.__model_url,
token=self.__token,
cache_dir=cache_path,
)
pipe.save_pretrained(cache_path, safe_serialization=True)
self.__download_upscaler()
def __download_upscaler(self) -> None:
upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler"
)
upscaler.save_pretrained(BASE_CACHE_PATH_UPSCALER, safe_serialization=True)
class CommonSetup:
def __init__(self, config: dict, token: str):
self.__token: str = token
self.__config: dict = config
def download_setup_files(self) -> None:
if self.__config.get("vae") is not None:
self.__download_vae(
name=self.__config["model"]["name"],
model_url=self.__config["vae"]["url"],
token=self.__token,
)
if self.__config.get("controlnets") is not None:
for controlnet in self.__config["controlnets"]:
self.__download_controlnet(
name=controlnet["name"],
repo_id=controlnet["repo_id"],
token=self.__token,
)
if self.__config.get("loras") is not None:
for lora in self.__config["loras"]:
self.__download_other_file(
url=lora["url"],
file_name=lora["name"],
file_path=BASE_CACHE_PATH_LORA,
)
if self.__config.get("textual_inversions") is not None:
for textual_inversion in self.__config["textual_inversions"]:
self.__download_other_file(
url=textual_inversion["url"],
file_name=textual_inversion["name"],
file_path=BASE_CACHE_PATH_TEXTUAL_INVERSION,
)
def __download_vae(self, name: str, model_url: str, token: str):
cache_path = os.path.join(BASE_CACHE_PATH, name)
vae = diffusers.AutoencoderKL.from_single_file(
pretrained_model_link_or_path=model_url,
use_auth_token=token,
cache_dir=cache_path,
)
vae.save_pretrained(cache_path, safe_serialization=True)
def __download_controlnet(self, name: str, repo_id: str, token: str):
cache_path = os.path.join(BASE_CACHE_PATH_CONTROLNET, name)
controlnet = diffusers.ControlNetModel.from_pretrained(
repo_id,
use_auth_token=token,
cache_dir=cache_path,
)
controlnet.save_pretrained(cache_path, safe_serialization=True)
def __download_other_file(self, url, file_name, file_path):
"""
Download file from the given URL for LoRA or TextualInversion.
"""
from urllib.request import Request, urlopen
req = Request(url, headers={"User-Agent": "Mozilla/5.0"})
downloaded = urlopen(req).read()
dir_names = os.path.join(file_path, file_name)
os.makedirs(os.path.dirname(dir_names), exist_ok=True)
with open(dir_names, mode="wb") as f:
f.write(downloaded)
def build_image():
"""
Build the Docker image.
"""
import yaml
token: str = os.environ["HUGGING_FACE_TOKEN"]
with open("/config.yml", "r") as file:
config: dict = yaml.safe_load(file)
stable_diffusion_setup: StableDiffusionCLISetupInterface
match config.get("version"):
case "sd15":
stable_diffusion_setup = StableDiffusionCLISetupSD15(config, token)
case "sdxl":
stable_diffusion_setup = StableDiffusionCLISetupSDXL(config, token)
case _:
raise ValueError(
f"Invalid version: {config.get('version')}. Must be 'sd15' or 'sdxl'."
)
stable_diffusion_setup.download_model()
common_setup = CommonSetup(config, token)
common_setup.download_setup_files()
app = App("stable-diffusion-cli")
base_stub = Image.from_dockerfile(
path="Dockerfile",
context_mount=Mount.from_local_file("requirements.txt"),
)
app.image = base_stub.dockerfile_commands(
"FROM base",
"COPY config.yml /",
context_mount=Mount.from_local_file("config.yml"),
).run_function(
build_image,
secrets=[Secret.from_dotenv(__file__)],
)