Merge branch 'frontier'
This commit is contained in:
commit
5192d316f0
6
.gitignore
vendored
6
.gitignore
vendored
@ -146,9 +146,9 @@ debug*
|
||||
private*
|
||||
crazy_functions/test_project/pdf_and_word
|
||||
crazy_functions/test_samples
|
||||
request_llm/jittorllms
|
||||
request_llms/jittorllms
|
||||
multi-language
|
||||
request_llm/moss
|
||||
request_llms/moss
|
||||
media
|
||||
flagged
|
||||
request_llm/ChatGLM-6b-onnx-u8s8
|
||||
request_llms/ChatGLM-6b-onnx-u8s8
|
||||
|
@ -129,11 +129,11 @@ python -m pip install -r requirements.txt # 这个步骤和pip安装一样的步
|
||||
【可选步骤】如果需要支持清华ChatGLM2/复旦MOSS作为后端,需要额外安装更多依赖(前提条件:熟悉Python + 用过Pytorch + 电脑配置够强):
|
||||
```sh
|
||||
# 【可选步骤I】支持清华ChatGLM2。清华ChatGLM备注:如果遇到"Call ChatGLM fail 不能正常加载ChatGLM的参数" 错误,参考如下: 1:以上默认安装的为torch+cpu版,使用cuda需要卸载torch重新安装torch+cuda; 2:如因本机配置不够无法加载模型,可以修改request_llm/bridge_chatglm.py中的模型精度, 将 AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) 都修改为 AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# 【可选步骤II】支持复旦MOSS
|
||||
python -m pip install -r request_llm/requirements_moss.txt
|
||||
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llm/moss # 注意执行此行代码时,必须处于项目根路径
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss # 注意执行此行代码时,必须处于项目根路径
|
||||
|
||||
# 【可选步骤III】支持RWKV Runner
|
||||
参考wiki:https://github.com/binary-husky/gpt_academic/wiki/%E9%80%82%E9%85%8DRWKV-Runner
|
||||
|
@ -46,7 +46,7 @@ def backup_and_download(current_version, remote_version):
|
||||
return new_version_dir
|
||||
os.makedirs(new_version_dir)
|
||||
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['history'])
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
r = requests.get(
|
||||
'https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip', proxies=proxies, stream=True)
|
||||
zip_file_path = backup_dir+'/master.zip'
|
||||
@ -113,7 +113,7 @@ def auto_update(raise_error=False):
|
||||
import requests
|
||||
import time
|
||||
import json
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
response = requests.get(
|
||||
"https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version", proxies=proxies, timeout=5)
|
||||
remote_json_data = json.loads(response.text)
|
||||
@ -156,7 +156,7 @@ def auto_update(raise_error=False):
|
||||
def warm_up_modules():
|
||||
print('正在执行一些模块的预热...')
|
||||
from toolbox import ProxyNetworkActivate
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
with ProxyNetworkActivate("Warmup_Modules"):
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
enc.encode("模块预热", disallowed_special=())
|
||||
@ -167,5 +167,5 @@ if __name__ == '__main__':
|
||||
import os
|
||||
os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
|
||||
from toolbox import get_conf
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
check_proxy(proxies)
|
||||
|
13
config.py
13
config.py
@ -91,7 +91,7 @@ AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5",
|
||||
"api2d-gpt-3.5-turbo", 'api2d-gpt-3.5-turbo-16k',
|
||||
"gpt-4", "gpt-4-32k", "azure-gpt-4", "api2d-gpt-4",
|
||||
"chatglm", "moss", "newbing", "claude-2"]
|
||||
# P.S. 其他可用的模型还包括 ["qianfan", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
|
||||
# P.S. 其他可用的模型还包括 ["zhipuai", "qianfan", "llama2", "qwen", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-random"
|
||||
# "spark", "sparkv2", "sparkv3", "chatglm_onnx", "claude-1-100k", "claude-2", "internlm", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
||||
|
||||
@ -140,7 +140,7 @@ SSL_CERTFILE = ""
|
||||
API_ORG = ""
|
||||
|
||||
|
||||
# 如果需要使用Slack Claude,使用教程详情见 request_llm/README.md
|
||||
# 如果需要使用Slack Claude,使用教程详情见 request_llms/README.md
|
||||
SLACK_CLAUDE_BOT_ID = ''
|
||||
SLACK_CLAUDE_USER_TOKEN = ''
|
||||
|
||||
@ -176,6 +176,11 @@ XFYUN_API_SECRET = "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
|
||||
XFYUN_API_KEY = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
||||
|
||||
|
||||
# 接入智谱大模型
|
||||
ZHIPUAI_API_KEY = ""
|
||||
ZHIPUAI_MODEL = "chatglm_turbo"
|
||||
|
||||
|
||||
# Claude API KEY
|
||||
ANTHROPIC_API_KEY = ""
|
||||
|
||||
@ -218,6 +223,10 @@ WHEN_TO_USE_PROXY = ["Download_LLM", "Download_Gradio_Theme", "Connect_Grobid",
|
||||
"Warmup_Modules", "Nougat_Download", "AutoGen"]
|
||||
|
||||
|
||||
# *实验性功能*: 自动检测并屏蔽失效的KEY,请勿使用
|
||||
BLOCK_INVALID_APIKEY = False
|
||||
|
||||
|
||||
# 自定义按钮的最大数量限制
|
||||
NUM_CUSTOM_BASIC_BTN = 4
|
||||
|
||||
|
@ -498,7 +498,7 @@ def get_crazy_functions():
|
||||
|
||||
try:
|
||||
from toolbox import get_conf
|
||||
ENABLE_AUDIO, = get_conf('ENABLE_AUDIO')
|
||||
ENABLE_AUDIO = get_conf('ENABLE_AUDIO')
|
||||
if ENABLE_AUDIO:
|
||||
from crazy_functions.语音助手 import 语音助手
|
||||
function_plugins.update({
|
||||
|
@ -11,7 +11,7 @@ class PaperFileGroup():
|
||||
self.sp_file_tag = []
|
||||
|
||||
# count_token
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
self.get_token_num = get_token_num
|
||||
|
@ -11,7 +11,7 @@ class PaperFileGroup():
|
||||
self.sp_file_tag = []
|
||||
|
||||
# count_token
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
self.get_token_num = get_token_num
|
||||
|
@ -129,7 +129,7 @@ def arxiv_download(chatbot, history, txt, allow_cache=True):
|
||||
yield from update_ui_lastest_msg("调用缓存", chatbot=chatbot, history=history) # 刷新界面
|
||||
else:
|
||||
yield from update_ui_lastest_msg("开始下载", chatbot=chatbot, history=history) # 刷新界面
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
r = requests.get(url_tar, proxies=proxies)
|
||||
with open(dst, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
|
@ -20,7 +20,7 @@ class PluginMultiprocessManager():
|
||||
self.system_prompt = system_prompt
|
||||
self.web_port = web_port
|
||||
self.alive = True
|
||||
self.use_docker, = get_conf('AUTOGEN_USE_DOCKER')
|
||||
self.use_docker = get_conf('AUTOGEN_USE_DOCKER')
|
||||
|
||||
# create a thread to monitor self.heartbeat, terminate the instance if no heartbeat for a long time
|
||||
timeout_seconds = 5*60
|
||||
|
@ -5,7 +5,7 @@ import logging
|
||||
|
||||
def input_clipping(inputs, history, max_token_limit):
|
||||
import numpy as np
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
|
||||
@ -63,7 +63,7 @@ def request_gpt_model_in_new_thread_with_ui_alive(
|
||||
"""
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
# 用户反馈
|
||||
chatbot.append([inputs_show_user, ""])
|
||||
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
|
||||
@ -177,11 +177,11 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||
"""
|
||||
import time, random
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
assert len(inputs_array) == len(history_array)
|
||||
assert len(inputs_array) == len(sys_prompt_array)
|
||||
if max_workers == -1: # 读取配置文件
|
||||
try: max_workers, = get_conf('DEFAULT_WORKER_NUM')
|
||||
try: max_workers = get_conf('DEFAULT_WORKER_NUM')
|
||||
except: max_workers = 8
|
||||
if max_workers <= 0: max_workers = 3
|
||||
# 屏蔽掉 chatglm的多线程,可能会导致严重卡顿
|
||||
@ -602,7 +602,7 @@ def get_files_from_everything(txt, type): # type='.md'
|
||||
import requests
|
||||
from toolbox import get_conf
|
||||
from toolbox import get_log_folder, gen_time_str
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
try:
|
||||
r = requests.get(txt, proxies=proxies)
|
||||
except:
|
||||
|
@ -165,7 +165,7 @@ class LatexPaperFileGroup():
|
||||
self.sp_file_tag = []
|
||||
|
||||
# count_token
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
self.get_token_num = get_token_num
|
||||
|
@ -14,7 +14,7 @@ import math
|
||||
class GROBID_OFFLINE_EXCEPTION(Exception): pass
|
||||
|
||||
def get_avail_grobid_url():
|
||||
GROBID_URLS, = get_conf('GROBID_URLS')
|
||||
GROBID_URLS = get_conf('GROBID_URLS')
|
||||
if len(GROBID_URLS) == 0: return None
|
||||
try:
|
||||
_grobid_url = random.choice(GROBID_URLS) # 随机负载均衡
|
||||
@ -103,7 +103,7 @@ def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_fi
|
||||
inputs_show_user_array = []
|
||||
|
||||
# get_token_num
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List
|
||||
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
||||
import copy, json, pickle, os, sys, time
|
||||
|
||||
|
@ -1,13 +1,13 @@
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import List
|
||||
from toolbox import update_ui_lastest_msg, get_conf
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO
|
||||
import copy, json, pickle, os, sys
|
||||
|
||||
|
||||
def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
||||
ALLOW_RESET_CONFIG, = get_conf('ALLOW_RESET_CONFIG')
|
||||
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
||||
if not ALLOW_RESET_CONFIG:
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||
@ -66,7 +66,7 @@ def modify_configuration_hot(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
)
|
||||
|
||||
def modify_configuration_reboot(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_intention):
|
||||
ALLOW_RESET_CONFIG, = get_conf('ALLOW_RESET_CONFIG')
|
||||
ALLOW_RESET_CONFIG = get_conf('ALLOW_RESET_CONFIG')
|
||||
if not ALLOW_RESET_CONFIG:
|
||||
yield from update_ui_lastest_msg(
|
||||
lastmsg=f"当前配置不允许被修改!如需激活本功能,请在config.py中设置ALLOW_RESET_CONFIG=True后重启软件。",
|
||||
|
@ -43,7 +43,7 @@ def download_arxiv_(url_pdf):
|
||||
file_path = download_dir+title_str
|
||||
|
||||
print('下载中')
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
r = requests.get(requests_pdf_url, proxies=proxies)
|
||||
with open(file_path, 'wb+') as f:
|
||||
f.write(r.content)
|
||||
@ -77,7 +77,7 @@ def get_name(_url_):
|
||||
# print('在缓存中')
|
||||
# return arxiv_recall[_url_]
|
||||
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
res = requests.get(_url_, proxies=proxies)
|
||||
|
||||
bs = BeautifulSoup(res.text, 'html.parser')
|
||||
|
@ -5,9 +5,9 @@ import datetime
|
||||
|
||||
def gen_image(llm_kwargs, prompt, resolution="256x256"):
|
||||
import requests, json, time, os
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
# Set up OpenAI API key and model
|
||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||
|
@ -41,7 +41,7 @@ def 多智能体终端(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_
|
||||
return
|
||||
|
||||
# 检查当前的模型是否符合要求
|
||||
API_URL_REDIRECT, = get_conf('API_URL_REDIRECT')
|
||||
API_URL_REDIRECT = get_conf('API_URL_REDIRECT')
|
||||
if len(API_URL_REDIRECT) > 0:
|
||||
chatbot.append([f"处理任务: {txt}", f"暂不支持中转."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
|
@ -32,7 +32,7 @@ def 解析docx(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot
|
||||
print(file_content)
|
||||
# private_upload里面的文件名在解压zip后容易出现乱码(rar和7z格式正常),故可以只分析文章内容,不输入文件名
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
max_token = model_info[llm_kwargs['llm_model']]['max_token']
|
||||
TOKEN_LIMIT_PER_FRAGMENT = max_token * 3 // 4
|
||||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||
|
@ -41,7 +41,7 @@ def split_audio_file(filename, split_duration=1000):
|
||||
def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
|
||||
import os, requests
|
||||
from moviepy.editor import AudioFileClip
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
# 设置OpenAI密钥和模型
|
||||
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||
@ -79,7 +79,7 @@ def AnalyAudio(parse_prompt, file_manifest, llm_kwargs, chatbot, history):
|
||||
|
||||
chatbot.append([f"将 {i} 发送到openai音频解析终端 (whisper),当前参数:{parse_prompt}", "正在处理 ..."])
|
||||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
response = requests.post(url, headers=headers, files=files, data=data, proxies=proxies).text
|
||||
|
||||
chatbot.append(["音频解析结果", response])
|
||||
|
@ -13,7 +13,7 @@ class PaperFileGroup():
|
||||
self.sp_file_tag = []
|
||||
|
||||
# count_token
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
self.get_token_num = get_token_num
|
||||
@ -118,7 +118,7 @@ def get_files_from_everything(txt, preference=''):
|
||||
if txt.startswith('http'):
|
||||
import requests
|
||||
from toolbox import get_conf
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
# 网络的远程文件
|
||||
if preference == 'Github':
|
||||
logging.info('正在从github下载资源 ...')
|
||||
|
@ -21,7 +21,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||
|
@ -95,7 +95,7 @@ def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot,
|
||||
|
||||
# 递归地切割PDF文件
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||
|
@ -19,7 +19,7 @@ def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_pro
|
||||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||||
|
||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||
|
@ -2,7 +2,7 @@ from toolbox import CatchException, update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
def google(query, proxies):
|
||||
query = query # 在此处替换您要搜索的关键词
|
||||
@ -72,7 +72,7 @@ def 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, s
|
||||
|
||||
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
|
||||
from toolbox import get_conf
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
urls = google(txt, proxies)
|
||||
history = []
|
||||
if len(urls) == 0:
|
||||
|
@ -2,7 +2,7 @@ from toolbox import CatchException, update_ui
|
||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive, input_clipping
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
|
||||
|
||||
def bing_search(query, proxies=None):
|
||||
@ -72,7 +72,7 @@ def 连接bing搜索回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, histor
|
||||
|
||||
# ------------- < 第1步:爬取搜索引擎的结果 > -------------
|
||||
from toolbox import get_conf
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
urls = bing_search(txt, proxies)
|
||||
history = []
|
||||
if len(urls) == 0:
|
||||
|
@ -48,7 +48,7 @@ from pydantic import BaseModel, Field
|
||||
from typing import List
|
||||
from toolbox import CatchException, update_ui, is_the_upload_folder
|
||||
from toolbox import update_ui_lastest_msg, disable_auto_promotion
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.json_fns.pydantic_io import GptJsonIO, JsonStringError
|
||||
|
@ -13,7 +13,7 @@ class PaperFileGroup():
|
||||
self.sp_file_tag = []
|
||||
|
||||
# count_token
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||||
def get_token_num(txt): return len(
|
||||
enc.encode(txt, disallowed_special=()))
|
||||
|
@ -2,7 +2,7 @@ from toolbox import update_ui
|
||||
from toolbox import CatchException, get_conf, markdown_convertion
|
||||
from crazy_functions.crazy_utils import input_clipping
|
||||
from crazy_functions.agent_fns.watchdog import WatchDog
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
import threading, time
|
||||
import numpy as np
|
||||
from .live_audio.aliyunASR import AliyunASR
|
||||
|
@ -17,7 +17,7 @@ def get_meta_information(url, chatbot, history):
|
||||
from urllib.parse import urlparse
|
||||
session = requests.session()
|
||||
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36',
|
||||
'Accept-Encoding': 'gzip, deflate, br',
|
||||
|
@ -137,7 +137,7 @@ services:
|
||||
|
||||
# P.S. 通过对 command 进行微调,可以便捷地安装额外的依赖
|
||||
# command: >
|
||||
# bash -c "pip install -r request_llm/requirements_qwen.txt && python3 -u main.py"
|
||||
# bash -c "pip install -r request_llms/requirements_qwen.txt && python3 -u main.py"
|
||||
|
||||
### ===================================================
|
||||
### 【方案三】 如果需要运行ChatGPT + LLAMA + 盘古 + RWKV本地模型
|
||||
|
@ -19,13 +19,13 @@ RUN python3 -m pip install aliyun-python-sdk-core==2.13.3 pyOpenSSL webrtcvad sc
|
||||
WORKDIR /gpt
|
||||
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
|
||||
WORKDIR /gpt/gpt_academic
|
||||
RUN git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llm/moss
|
||||
RUN git clone --depth=1 https://github.com/OpenLMLab/MOSS.git request_llms/moss
|
||||
|
||||
RUN python3 -m pip install -r requirements.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_moss.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_qwen.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_chatglm.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_newbing.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_moss.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||
RUN python3 -m pip install nougat-ocr
|
||||
|
||||
|
||||
|
@ -14,12 +14,12 @@ RUN python3 -m pip install torch --extra-index-url https://download.pytorch.org/
|
||||
WORKDIR /gpt
|
||||
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
|
||||
WORKDIR /gpt/gpt_academic
|
||||
RUN git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss
|
||||
RUN git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss
|
||||
RUN python3 -m pip install -r requirements.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_moss.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_qwen.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_chatglm.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_newbing.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_moss.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_qwen.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||
|
||||
|
||||
|
||||
|
@ -16,12 +16,12 @@ WORKDIR /gpt
|
||||
RUN git clone --depth=1 https://github.com/binary-husky/gpt_academic.git
|
||||
WORKDIR /gpt/gpt_academic
|
||||
RUN python3 -m pip install -r requirements.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_chatglm.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_newbing.txt
|
||||
RUN python3 -m pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I
|
||||
RUN python3 -m pip install -r request_llms/requirements_chatglm.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_newbing.txt
|
||||
RUN python3 -m pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I
|
||||
|
||||
# 下载JittorLLMs
|
||||
RUN git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llm/jittorllms
|
||||
RUN git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llms/jittorllms
|
||||
|
||||
# 禁用缓存,确保更新代码
|
||||
ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
|
||||
|
@ -103,12 +103,12 @@ python -m pip install -r requirements.txt # Same step as pip installation
|
||||
|
||||
[Optional Step] If supporting Tsinghua ChatGLM/Fudan MOSS as backend, additional dependencies need to be installed (Prerequisites: Familiar with Python + Used Pytorch + Sufficient computer configuration):
|
||||
```sh
|
||||
# [Optional Step I] Support Tsinghua ChatGLM. Remark: If encountering "Call ChatGLM fail Cannot load ChatGLM parameters", please refer to the following: 1: The above default installation is torch+cpu version. To use cuda, uninstall torch and reinstall torch+cuda; 2: If the model cannot be loaded due to insufficient machine configuration, you can modify the model precision in `request_llm/bridge_chatglm.py`, and modify all AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
# [Optional Step I] Support Tsinghua ChatGLM. Remark: If encountering "Call ChatGLM fail Cannot load ChatGLM parameters", please refer to the following: 1: The above default installation is torch+cpu version. To use cuda, uninstall torch and reinstall torch+cuda; 2: If the model cannot be loaded due to insufficient machine configuration, you can modify the model precision in `request_llms/bridge_chatglm.py`, and modify all AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# [Optional Step II] Support Fudan MOSS
|
||||
python -m pip install -r request_llm/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # When executing this line of code, you must be in the project root path
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # When executing this line of code, you must be in the project root path
|
||||
|
||||
# [Optional Step III] Make sure the AVAIL_LLM_MODELS in the config.py configuration file contains the expected models. Currently supported models are as follows (jittorllms series currently only supports docker solutions):
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
@ -109,12 +109,12 @@ python -m pip install -r requirements.txt # questo passaggio funziona allo stess
|
||||
|
||||
【Passaggio facoltativo】 Se si desidera supportare ChatGLM di Tsinghua/MOSS di Fudan come backend, è necessario installare ulteriori dipendenze (prerequisiti: conoscenza di Python, esperienza con Pytorch e computer sufficientemente potente):
|
||||
```sh
|
||||
# 【Passaggio facoltativo I】 Supporto a ChatGLM di Tsinghua. Note su ChatGLM di Tsinghua: in caso di errore "Call ChatGLM fail 不能正常加载ChatGLM的参数" , fare quanto segue: 1. Per impostazione predefinita, viene installata la versione di torch + cpu; per usare CUDA, è necessario disinstallare torch e installare nuovamente torch + cuda; 2. Se non è possibile caricare il modello a causa di una configurazione insufficiente del computer, è possibile modificare la precisione del modello in request_llm/bridge_chatglm.py, cambiando AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) in AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
# 【Passaggio facoltativo I】 Supporto a ChatGLM di Tsinghua. Note su ChatGLM di Tsinghua: in caso di errore "Call ChatGLM fail 不能正常加载ChatGLM的参数" , fare quanto segue: 1. Per impostazione predefinita, viene installata la versione di torch + cpu; per usare CUDA, è necessario disinstallare torch e installare nuovamente torch + cuda; 2. Se non è possibile caricare il modello a causa di una configurazione insufficiente del computer, è possibile modificare la precisione del modello in request_llms/bridge_chatglm.py, cambiando AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) in AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# 【Passaggio facoltativo II】 Supporto a MOSS di Fudan
|
||||
python -m pip install -r request_llm/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Si prega di notare che quando si esegue questa riga di codice, si deve essere nella directory radice del progetto
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # Si prega di notare che quando si esegue questa riga di codice, si deve essere nella directory radice del progetto
|
||||
|
||||
# 【Passaggio facoltativo III】 Assicurati che il file di configurazione config.py includa tutti i modelli desiderati, al momento tutti i modelli supportati sono i seguenti (i modelli della serie jittorllms attualmente supportano solo la soluzione docker):
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
@ -104,11 +104,11 @@ python -m pip install -r requirements.txt # 이 단계도 pip install의 단계
|
||||
# 1 : 기본 설치된 것들은 torch + cpu 버전입니다. cuda를 사용하려면 torch를 제거한 다음 torch + cuda를 다시 설치해야합니다.
|
||||
# 2 : 모델을 로드할 수 없는 기계 구성 때문에, AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)를
|
||||
# AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)로 변경합니다.
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# [선택 사항 II] Fudan MOSS 지원
|
||||
python -m pip install -r request_llm/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # 다음 코드 줄을 실행할 때 프로젝트 루트 경로에 있어야합니다.
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # 다음 코드 줄을 실행할 때 프로젝트 루트 경로에 있어야합니다.
|
||||
|
||||
# [선택 사항III] AVAIL_LLM_MODELS config.py 구성 파일에 기대하는 모델이 포함되어 있는지 확인하십시오.
|
||||
# 현재 지원되는 전체 모델 :
|
||||
|
@ -119,12 +119,12 @@ python -m pip install -r requirements.txt # This step is the same as the pip ins
|
||||
|
||||
[Optional Step] If you need to support Tsinghua ChatGLM / Fudan MOSS as the backend, you need to install more dependencies (prerequisite: familiar with Python + used Pytorch + computer configuration is strong):
|
||||
```sh
|
||||
# 【Optional Step I】support Tsinghua ChatGLM。Tsinghua ChatGLM Note: If you encounter a "Call ChatGLM fails cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installed is torch+cpu version, and using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient computer configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
# 【Optional Step I】support Tsinghua ChatGLM。Tsinghua ChatGLM Note: If you encounter a "Call ChatGLM fails cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installed is torch+cpu version, and using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient computer configuration, you can modify the model accuracy in request_llms/bridge_chatglm.py and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# 【Optional Step II】support Fudan MOSS
|
||||
python -m pip install -r request_llm/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note: When executing this line of code, you must be in the project root path
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # Note: When executing this line of code, you must be in the project root path
|
||||
|
||||
# 【Optional Step III】Make sure that the AVAIL_LLM_MODELS in the config.py configuration file contains the expected model. Currently, all supported models are as follows (jittorllms series currently only supports docker solutions):
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
@ -106,12 +106,12 @@ python -m pip install -r requirements.txt # this step is the same as pip install
|
||||
|
||||
[Optional step] If you need to support Tsinghua ChatGLM/Fudan MOSS as a backend, you need to install more dependencies (prerequisites: familiar with Python + used Pytorch + computer configuration is strong enough):
|
||||
```sh
|
||||
# [Optional Step I] Support Tsinghua ChatGLM. Tsinghua ChatGLM remarks: if you encounter the "Call ChatGLM fail cannot load ChatGLM parameters" error, refer to this: 1: The default installation above is torch + cpu version, to use cuda, you need to uninstall torch and reinstall torch + cuda; 2: If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py, and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code = True)
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
# [Optional Step I] Support Tsinghua ChatGLM. Tsinghua ChatGLM remarks: if you encounter the "Call ChatGLM fail cannot load ChatGLM parameters" error, refer to this: 1: The default installation above is torch + cpu version, to use cuda, you need to uninstall torch and reinstall torch + cuda; 2: If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llms/bridge_chatglm.py, and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code = True)
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# [Optional Step II] Support Fudan MOSS
|
||||
python -m pip install -r request_llm/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # When executing this line of code, you must be in the root directory of the project
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # When executing this line of code, you must be in the root directory of the project
|
||||
|
||||
# [Optional Step III] Make sure the AVAIL_LLM_MODELS in the config.py configuration file includes the expected models. Currently supported models are as follows (the jittorllms series only supports the docker solution for the time being):
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
@ -111,12 +111,12 @@ python -m pip install -r requirements.txt # Same step as pip instalation
|
||||
|
||||
【Optional】 Si vous souhaitez prendre en charge THU ChatGLM/FDU MOSS en tant que backend, des dépendances supplémentaires doivent être installées (prérequis: compétent en Python + utilisez Pytorch + configuration suffisante de l'ordinateur):
|
||||
```sh
|
||||
# 【Optional Step I】 Support THU ChatGLM. Remarque sur THU ChatGLM: Si vous rencontrez l'erreur "Appel à ChatGLM échoué, les paramètres ChatGLM ne peuvent pas être chargés normalement", reportez-vous à ce qui suit: 1: La version par défaut installée est torch+cpu, si vous souhaitez utiliser cuda, vous devez désinstaller torch et réinstaller torch+cuda; 2: Si le modèle ne peut pas être chargé en raison d'une configuration insuffisante de l'ordinateur local, vous pouvez modifier la précision du modèle dans request_llm/bridge_chatglm.py, modifier AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) par AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
# 【Optional Step I】 Support THU ChatGLM. Remarque sur THU ChatGLM: Si vous rencontrez l'erreur "Appel à ChatGLM échoué, les paramètres ChatGLM ne peuvent pas être chargés normalement", reportez-vous à ce qui suit: 1: La version par défaut installée est torch+cpu, si vous souhaitez utiliser cuda, vous devez désinstaller torch et réinstaller torch+cuda; 2: Si le modèle ne peut pas être chargé en raison d'une configuration insuffisante de l'ordinateur local, vous pouvez modifier la précision du modèle dans request_llms/bridge_chatglm.py, modifier AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) par AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# 【Optional Step II】 Support FDU MOSS
|
||||
python -m pip install -r request_llm/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note: When running this line of code, you must be in the project root path.
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # Note: When running this line of code, you must be in the project root path.
|
||||
|
||||
# 【Optional Step III】Make sure the AVAIL_LLM_MODELS in the config.py configuration file contains the desired model. Currently, all models supported are as follows (the jittorllms series currently only supports the docker scheme):
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
@ -120,12 +120,12 @@ python -m pip install -r requirements.txt # This step is the same as the pip ins
|
||||
[Optional Steps] If you need to support Tsinghua ChatGLM/Fudan MOSS as a backend, you need to install more dependencies (precondition: familiar with Python + used Pytorch + computer configuration). Strong enough):
|
||||
|
||||
```sh
|
||||
# Optional step I: support Tsinghua ChatGLM. Tsinghua ChatGLM remarks: If you encounter the error "Call ChatGLM fail cannot load ChatGLM parameters normally", refer to the following: 1: The version installed above is torch+cpu version, using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py, and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
# Optional step I: support Tsinghua ChatGLM. Tsinghua ChatGLM remarks: If you encounter the error "Call ChatGLM fail cannot load ChatGLM parameters normally", refer to the following: 1: The version installed above is torch+cpu version, using cuda requires uninstalling torch and reinstalling torch+cuda; 2: If the model cannot be loaded due to insufficient local configuration, you can modify the model accuracy in request_llms/bridge_chatglm.py, and change AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# Optional Step II: Support Fudan MOSS.
|
||||
python -m pip install -r request_llm/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note that when executing this line of code, it must be in the project root.
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # Note that when executing this line of code, it must be in the project root.
|
||||
|
||||
# 【Optional Step III】Ensure that the AVAIL_LLM_MODELS in the config.py configuration file contains the expected model. Currently, all supported models are as follows (jittorllms series currently only supports the docker solution):
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
@ -108,12 +108,12 @@ python -m pip install -r requirements.txt # This step is the same as the pip ins
|
||||
|
||||
[Optional step] If you need to support Tsinghua ChatGLM/Fudan MOSS as backend, you need to install more dependencies (prerequisites: familiar with Python + have used Pytorch + computer configuration is strong):
|
||||
```sh
|
||||
# [Optional step I] Support Tsinghua ChatGLM. Tsinghua ChatGLM note: If you encounter the "Call ChatGLM fail cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installation above is torch+cpu version, and cuda is used Need to uninstall torch and reinstall torch+cuda; 2: If you cannot load the model due to insufficient local configuration, you can modify the model accuracy in request_llm/bridge_chatglm.py, AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) Modify to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llm/requirements_chatglm.txt
|
||||
# [Optional step I] Support Tsinghua ChatGLM. Tsinghua ChatGLM note: If you encounter the "Call ChatGLM fail cannot load ChatGLM parameters normally" error, refer to the following: 1: The default installation above is torch+cpu version, and cuda is used Need to uninstall torch and reinstall torch+cuda; 2: If you cannot load the model due to insufficient local configuration, you can modify the model accuracy in request_llms/bridge_chatglm.py, AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) Modify to AutoTokenizer.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True)
|
||||
python -m pip install -r request_llms/requirements_chatglm.txt
|
||||
|
||||
# [Optional step II] Support Fudan MOSS
|
||||
python -m pip install -r request_llm/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss # Note that when executing this line of code, you must be in the project root path
|
||||
python -m pip install -r request_llms/requirements_moss.txt
|
||||
git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss # Note that when executing this line of code, you must be in the project root path
|
||||
|
||||
# [Optional step III] Make sure the AVAIL_LLM_MODELS in the config.py configuration file contains the expected models. Currently, all supported models are as follows (the jittorllms series currently only supports the docker solution):
|
||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "newbing", "moss"] # + ["jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||
|
@ -16,7 +16,7 @@ nano config.py
|
||||
+ demo.queue(concurrency_count=CONCURRENT_COUNT)
|
||||
|
||||
- # 如果需要在二级路径下运行
|
||||
- # CUSTOM_PATH, = get_conf('CUSTOM_PATH')
|
||||
- # CUSTOM_PATH = get_conf('CUSTOM_PATH')
|
||||
- # if CUSTOM_PATH != "/":
|
||||
- # from toolbox import run_gradio_in_subpath
|
||||
- # run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
|
||||
@ -24,7 +24,7 @@ nano config.py
|
||||
- # demo.launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION, favicon_path="docs/logo.png")
|
||||
|
||||
+ 如果需要在二级路径下运行
|
||||
+ CUSTOM_PATH, = get_conf('CUSTOM_PATH')
|
||||
+ CUSTOM_PATH = get_conf('CUSTOM_PATH')
|
||||
+ if CUSTOM_PATH != "/":
|
||||
+ from toolbox import run_gradio_in_subpath
|
||||
+ run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
|
||||
|
@ -38,20 +38,20 @@
|
||||
| crazy_functions\读文章写摘要.py | 对论文进行解析和全文摘要生成 |
|
||||
| crazy_functions\谷歌检索小助手.py | 提供谷歌学术搜索页面中相关文章的元数据信息。 |
|
||||
| crazy_functions\高级功能函数模板.py | 使用Unsplash API发送相关图片以回复用户的输入。 |
|
||||
| request_llm\bridge_all.py | 基于不同LLM模型进行对话。 |
|
||||
| request_llm\bridge_chatglm.py | 使用ChatGLM模型生成回复,支持单线程和多线程方式。 |
|
||||
| request_llm\bridge_chatgpt.py | 基于GPT模型完成对话。 |
|
||||
| request_llm\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话,支持单线程和多线程方式。 |
|
||||
| request_llm\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话,基于多进程和多线程方式。 |
|
||||
| request_llm\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能,提供包括历史信息、参数调节等在内的多个功能选项。 |
|
||||
| request_llm\bridge_moss.py | 加载Moss模型完成对话功能。 |
|
||||
| request_llm\bridge_newbing.py | 使用Newbing聊天机器人进行对话,支持单线程和多线程方式。 |
|
||||
| request_llm\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
|
||||
| request_llm\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
|
||||
| request_llm\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
|
||||
| request_llm\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
|
||||
| request_llm\edge_gpt_free.py | 实现聊天机器人API,采用aiohttp和httpx工具库。 |
|
||||
| request_llm\test_llms.py | 对llm模型进行单元测试。 |
|
||||
| request_llms\bridge_all.py | 基于不同LLM模型进行对话。 |
|
||||
| request_llms\bridge_chatglm.py | 使用ChatGLM模型生成回复,支持单线程和多线程方式。 |
|
||||
| request_llms\bridge_chatgpt.py | 基于GPT模型完成对话。 |
|
||||
| request_llms\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话,支持单线程和多线程方式。 |
|
||||
| request_llms\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话,基于多进程和多线程方式。 |
|
||||
| request_llms\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能,提供包括历史信息、参数调节等在内的多个功能选项。 |
|
||||
| request_llms\bridge_moss.py | 加载Moss模型完成对话功能。 |
|
||||
| request_llms\bridge_newbing.py | 使用Newbing聊天机器人进行对话,支持单线程和多线程方式。 |
|
||||
| request_llms\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
|
||||
| request_llms\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
|
||||
| request_llms\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
|
||||
| request_llms\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
|
||||
| request_llms\edge_gpt_free.py | 实现聊天机器人API,采用aiohttp和httpx工具库。 |
|
||||
| request_llms\test_llms.py | 对llm模型进行单元测试。 |
|
||||
|
||||
## 接下来请你逐文件分析下面的工程[0/48] 请对下面的程序文件做一个概述: check_proxy.py
|
||||
|
||||
@ -129,7 +129,7 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
||||
1. `input_clipping`: 该函数用于裁剪输入文本长度,使其不超过一定的限制。
|
||||
2. `request_gpt_model_in_new_thread_with_ui_alive`: 该函数用于请求 GPT 模型并保持用户界面的响应,支持多线程和实时更新用户界面。
|
||||
|
||||
这两个函数都依赖于从 `toolbox` 和 `request_llm` 中导入的一些工具函数。函数的输入和输出有详细的描述文档。
|
||||
这两个函数都依赖于从 `toolbox` 和 `request_llms` 中导入的一些工具函数。函数的输入和输出有详细的描述文档。
|
||||
|
||||
## [12/48] 请对下面的程序文件做一个概述: crazy_functions\Latex全文润色.py
|
||||
|
||||
@ -137,7 +137,7 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
||||
|
||||
## [13/48] 请对下面的程序文件做一个概述: crazy_functions\Latex全文翻译.py
|
||||
|
||||
这个文件包含两个函数 `Latex英译中` 和 `Latex中译英`,它们都会对整个Latex项目进行翻译。这个文件还包含一个类 `PaperFileGroup`,它拥有一个方法 `run_file_split`,用于把长文本文件分成多个短文件。其中使用了工具库 `toolbox` 中的一些函数和从 `request_llm` 中导入了 `model_info`。接下来的函数把文件读取进来,把它们的注释删除,进行分割,并进行翻译。这个文件还包括了一些异常处理和界面更新的操作。
|
||||
这个文件包含两个函数 `Latex英译中` 和 `Latex中译英`,它们都会对整个Latex项目进行翻译。这个文件还包含一个类 `PaperFileGroup`,它拥有一个方法 `run_file_split`,用于把长文本文件分成多个短文件。其中使用了工具库 `toolbox` 中的一些函数和从 `request_llms` 中导入了 `model_info`。接下来的函数把文件读取进来,把它们的注释删除,进行分割,并进行翻译。这个文件还包括了一些异常处理和界面更新的操作。
|
||||
|
||||
## [14/48] 请对下面的程序文件做一个概述: crazy_functions\__init__.py
|
||||
|
||||
@ -227,19 +227,19 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
||||
|
||||
该程序文件定义了一个名为高阶功能模板函数的函数,该函数接受多个参数,包括输入的文本、gpt模型参数、插件模型参数、聊天显示框的句柄、聊天历史等,并利用送出请求,使用 Unsplash API 发送相关图片。其中,为了避免输入溢出,函数会在开始时清空历史。函数也有一些 UI 更新的语句。该程序文件还依赖于其他两个模块:CatchException 和 update_ui,以及一个名为 request_gpt_model_in_new_thread_with_ui_alive 的来自 crazy_utils 模块(应该是自定义的工具包)的函数。
|
||||
|
||||
## [34/48] 请对下面的程序文件做一个概述: request_llm\bridge_all.py
|
||||
## [34/48] 请对下面的程序文件做一个概述: request_llms\bridge_all.py
|
||||
|
||||
该文件包含两个函数:predict和predict_no_ui_long_connection,用于基于不同的LLM模型进行对话。该文件还包含一个lazyloadTiktoken类和一个LLM_CATCH_EXCEPTION修饰器函数。其中lazyloadTiktoken类用于懒加载模型的tokenizer,LLM_CATCH_EXCEPTION用于错误处理。整个文件还定义了一些全局变量和模型信息字典,用于引用和配置LLM模型。
|
||||
|
||||
## [35/48] 请对下面的程序文件做一个概述: request_llm\bridge_chatglm.py
|
||||
## [35/48] 请对下面的程序文件做一个概述: request_llms\bridge_chatglm.py
|
||||
|
||||
这是一个Python程序文件,名为`bridge_chatglm.py`,其中定义了一个名为`GetGLMHandle`的类和三个方法:`predict_no_ui_long_connection`、 `predict`和 `stream_chat`。该文件依赖于多个Python库,如`transformers`和`sentencepiece`。该文件实现了一个聊天机器人,使用ChatGLM模型来生成回复,支持单线程和多线程方式。程序启动时需要加载ChatGLM的模型和tokenizer,需要一段时间。在配置文件`config.py`中设置参数会影响模型的内存和显存使用,因此程序可能会导致低配计算机卡死。
|
||||
|
||||
## [36/48] 请对下面的程序文件做一个概述: request_llm\bridge_chatgpt.py
|
||||
## [36/48] 请对下面的程序文件做一个概述: request_llms\bridge_chatgpt.py
|
||||
|
||||
该文件为 Python 代码文件,文件名为 request_llm\bridge_chatgpt.py。该代码文件主要提供三个函数:predict、predict_no_ui和 predict_no_ui_long_connection,用于发送至 chatGPT 并等待回复,获取输出。该代码文件还包含一些辅助函数,用于处理连接异常、生成 HTTP 请求等。该文件的代码架构清晰,使用了多个自定义函数和模块。
|
||||
该文件为 Python 代码文件,文件名为 request_llms\bridge_chatgpt.py。该代码文件主要提供三个函数:predict、predict_no_ui和 predict_no_ui_long_connection,用于发送至 chatGPT 并等待回复,获取输出。该代码文件还包含一些辅助函数,用于处理连接异常、生成 HTTP 请求等。该文件的代码架构清晰,使用了多个自定义函数和模块。
|
||||
|
||||
## [37/48] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_llama.py
|
||||
## [37/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_llama.py
|
||||
|
||||
该代码文件实现了一个聊天机器人,其中使用了 JittorLLMs 模型。主要包括以下几个部分:
|
||||
1. GetGLMHandle 类:一个进程类,用于加载 JittorLLMs 模型并接收并处理请求。
|
||||
@ -248,17 +248,17 @@ toolbox.py是一个工具类库,其中主要包含了一些函数装饰器和
|
||||
|
||||
这个文件中还有一些辅助函数和全局变量,例如 importlib、time、threading 等。
|
||||
|
||||
## [38/48] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_pangualpha.py
|
||||
## [38/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_pangualpha.py
|
||||
|
||||
这个文件是为了实现使用jittorllms(一种机器学习模型)来进行聊天功能的代码。其中包括了模型加载、模型的参数加载、消息的收发等相关操作。其中使用了多进程和多线程来提高性能和效率。代码中还包括了处理依赖关系的函数和预处理函数等。
|
||||
|
||||
## [39/48] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_rwkv.py
|
||||
## [39/48] 请对下面的程序文件做一个概述: request_llms\bridge_jittorllms_rwkv.py
|
||||
|
||||
这个文件是一个Python程序,文件名为request_llm\bridge_jittorllms_rwkv.py。它依赖transformers、time、threading、importlib、multiprocessing等库。在文件中,通过定义GetGLMHandle类加载jittorllms模型参数和定义stream_chat方法来实现与jittorllms模型的交互。同时,该文件还定义了predict_no_ui_long_connection和predict方法来处理历史信息、调用jittorllms模型、接收回复信息并输出结果。
|
||||
|
||||
## [40/48] 请对下面的程序文件做一个概述: request_llm\bridge_moss.py
|
||||
## [40/48] 请对下面的程序文件做一个概述: request_llms\bridge_moss.py
|
||||
|
||||
该文件为一个Python源代码文件,文件名为 request_llm\bridge_moss.py。代码定义了一个 GetGLMHandle 类和两个函数 predict_no_ui_long_connection 和 predict。
|
||||
该文件为一个Python源代码文件,文件名为 request_llms\bridge_moss.py。代码定义了一个 GetGLMHandle 类和两个函数 predict_no_ui_long_connection 和 predict。
|
||||
|
||||
GetGLMHandle 类继承自Process类(多进程),主要功能是启动一个子进程并加载 MOSS 模型参数,通过 Pipe 进行主子进程的通信。该类还定义了 check_dependency、moss_init、run 和 stream_chat 等方法,其中 check_dependency 和 moss_init 是子进程的初始化方法,run 是子进程运行方法,stream_chat 实现了主进程和子进程的交互过程。
|
||||
|
||||
@ -266,7 +266,7 @@ GetGLMHandle 类继承自Process类(多进程),主要功能是启动一个
|
||||
|
||||
函数 predict 是单线程方法,通过调用 update_ui 将交互过程中 MOSS 的回复实时更新到UI(User Interface)中,并执行一个 named function(additional_fn)指定的函数对输入进行预处理。
|
||||
|
||||
## [41/48] 请对下面的程序文件做一个概述: request_llm\bridge_newbing.py
|
||||
## [41/48] 请对下面的程序文件做一个概述: request_llms\bridge_newbing.py
|
||||
|
||||
这是一个名为`bridge_newbing.py`的程序文件,包含三个部分:
|
||||
|
||||
@ -276,11 +276,11 @@ GetGLMHandle 类继承自Process类(多进程),主要功能是启动一个
|
||||
|
||||
第三部分定义了一个名为`newbing_handle`的全局变量,并导出了`predict_no_ui_long_connection`和`predict`这两个方法,以供其他程序可以调用。
|
||||
|
||||
## [42/48] 请对下面的程序文件做一个概述: request_llm\bridge_newbingfree.py
|
||||
## [42/48] 请对下面的程序文件做一个概述: request_llms\bridge_newbingfree.py
|
||||
|
||||
这个Python文件包含了三部分内容。第一部分是来自edge_gpt_free.py文件的聊天机器人程序。第二部分是子进程Worker,用于调用主体。第三部分提供了两个函数:predict_no_ui_long_connection和predict用于调用NewBing聊天机器人和返回响应。其中predict函数还提供了一些参数用于控制聊天机器人的回复和更新UI界面。
|
||||
|
||||
## [43/48] 请对下面的程序文件做一个概述: request_llm\bridge_stackclaude.py
|
||||
## [43/48] 请对下面的程序文件做一个概述: request_llms\bridge_stackclaude.py
|
||||
|
||||
这是一个Python源代码文件,文件名为request_llm\bridge_stackclaude.py。代码分为三个主要部分:
|
||||
|
||||
@ -290,21 +290,21 @@ GetGLMHandle 类继承自Process类(多进程),主要功能是启动一个
|
||||
|
||||
第三部分定义了predict_no_ui_long_connection和predict两个函数,主要用于通过调用ClaudeHandle对象的stream_chat方法来获取Claude的回复,并更新ui以显示相关信息。其中predict函数采用单线程方法,而predict_no_ui_long_connection函数使用多线程方法。
|
||||
|
||||
## [44/48] 请对下面的程序文件做一个概述: request_llm\bridge_tgui.py
|
||||
## [44/48] 请对下面的程序文件做一个概述: request_llms\bridge_tgui.py
|
||||
|
||||
该文件是一个Python代码文件,名为request_llm\bridge_tgui.py。它包含了一些函数用于与chatbot UI交互,并通过WebSocket协议与远程LLM模型通信完成文本生成任务,其中最重要的函数是predict()和predict_no_ui_long_connection()。这个程序还有其他的辅助函数,如random_hash()。整个代码文件在协作的基础上完成了一次修改。
|
||||
|
||||
## [45/48] 请对下面的程序文件做一个概述: request_llm\edge_gpt.py
|
||||
## [45/48] 请对下面的程序文件做一个概述: request_llms\edge_gpt.py
|
||||
|
||||
该文件是一个用于调用Bing chatbot API的Python程序,它由多个类和辅助函数构成,可以根据给定的对话连接在对话中提出问题,使用websocket与远程服务通信。程序实现了一个聊天机器人,可以为用户提供人工智能聊天。
|
||||
|
||||
## [46/48] 请对下面的程序文件做一个概述: request_llm\edge_gpt_free.py
|
||||
## [46/48] 请对下面的程序文件做一个概述: request_llms\edge_gpt_free.py
|
||||
|
||||
该代码文件为一个会话API,可通过Chathub发送消息以返回响应。其中使用了 aiohttp 和 httpx 库进行网络请求并发送。代码中包含了一些函数和常量,多数用于生成请求数据或是请求头信息等。同时该代码文件还包含了一个 Conversation 类,调用该类可实现对话交互。
|
||||
|
||||
## [47/48] 请对下面的程序文件做一个概述: request_llm\test_llms.py
|
||||
## [47/48] 请对下面的程序文件做一个概述: request_llms\test_llms.py
|
||||
|
||||
这个文件是用于对llm模型进行单元测试的Python程序。程序导入一个名为"request_llm.bridge_newbingfree"的模块,然后三次使用该模块中的predict_no_ui_long_connection()函数进行预测,并输出结果。此外,还有一些注释掉的代码段,这些代码段也是关于模型预测的。
|
||||
这个文件是用于对llm模型进行单元测试的Python程序。程序导入一个名为"request_llms.bridge_newbingfree"的模块,然后三次使用该模块中的predict_no_ui_long_connection()函数进行预测,并输出结果。此外,还有一些注释掉的代码段,这些代码段也是关于模型预测的。
|
||||
|
||||
## 用一张Markdown表格简要描述以下文件的功能:
|
||||
check_proxy.py, colorful.py, config.py, config_private.py, core_functional.py, crazy_functional.py, main.py, multi_language.py, theme.py, toolbox.py, crazy_functions\crazy_functions_test.py, crazy_functions\crazy_utils.py, crazy_functions\Latex全文润色.py, crazy_functions\Latex全文翻译.py, crazy_functions\__init__.py, crazy_functions\下载arxiv论文翻译摘要.py。根据以上分析,用一句话概括程序的整体功能。
|
||||
@ -355,24 +355,24 @@ crazy_functions\代码重写为全英文_多线程.py, crazy_functions\图片生
|
||||
概括程序的整体功能:提供了一系列处理文本、文件和代码的功能,使用了各类语言模型、多线程、网络请求和数据解析技术来提高效率和精度。
|
||||
|
||||
## 用一张Markdown表格简要描述以下文件的功能:
|
||||
crazy_functions\谷歌检索小助手.py, crazy_functions\高级功能函数模板.py, request_llm\bridge_all.py, request_llm\bridge_chatglm.py, request_llm\bridge_chatgpt.py, request_llm\bridge_jittorllms_llama.py, request_llm\bridge_jittorllms_pangualpha.py, request_llm\bridge_jittorllms_rwkv.py, request_llm\bridge_moss.py, request_llm\bridge_newbing.py, request_llm\bridge_newbingfree.py, request_llm\bridge_stackclaude.py, request_llm\bridge_tgui.py, request_llm\edge_gpt.py, request_llm\edge_gpt_free.py, request_llm\test_llms.py。根据以上分析,用一句话概括程序的整体功能。
|
||||
crazy_functions\谷歌检索小助手.py, crazy_functions\高级功能函数模板.py, request_llms\bridge_all.py, request_llms\bridge_chatglm.py, request_llms\bridge_chatgpt.py, request_llms\bridge_jittorllms_llama.py, request_llms\bridge_jittorllms_pangualpha.py, request_llms\bridge_jittorllms_rwkv.py, request_llms\bridge_moss.py, request_llms\bridge_newbing.py, request_llms\bridge_newbingfree.py, request_llms\bridge_stackclaude.py, request_llms\bridge_tgui.py, request_llms\edge_gpt.py, request_llms\edge_gpt_free.py, request_llms\test_llms.py。根据以上分析,用一句话概括程序的整体功能。
|
||||
|
||||
| 文件名 | 功能描述 |
|
||||
| --- | --- |
|
||||
| crazy_functions\谷歌检索小助手.py | 提供谷歌学术搜索页面中相关文章的元数据信息。 |
|
||||
| crazy_functions\高级功能函数模板.py | 使用Unsplash API发送相关图片以回复用户的输入。 |
|
||||
| request_llm\bridge_all.py | 基于不同LLM模型进行对话。 |
|
||||
| request_llm\bridge_chatglm.py | 使用ChatGLM模型生成回复,支持单线程和多线程方式。 |
|
||||
| request_llm\bridge_chatgpt.py | 基于GPT模型完成对话。 |
|
||||
| request_llm\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话,支持单线程和多线程方式。 |
|
||||
| request_llm\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话,基于多进程和多线程方式。 |
|
||||
| request_llm\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能,提供包括历史信息、参数调节等在内的多个功能选项。 |
|
||||
| request_llm\bridge_moss.py | 加载Moss模型完成对话功能。 |
|
||||
| request_llm\bridge_newbing.py | 使用Newbing聊天机器人进行对话,支持单线程和多线程方式。 |
|
||||
| request_llm\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
|
||||
| request_llm\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
|
||||
| request_llm\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
|
||||
| request_llm\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
|
||||
| request_llm\edge_gpt_free.py | 实现聊天机器人API,采用aiohttp和httpx工具库。 |
|
||||
| request_llm\test_llms.py | 对llm模型进行单元测试。 |
|
||||
| request_llms\bridge_all.py | 基于不同LLM模型进行对话。 |
|
||||
| request_llms\bridge_chatglm.py | 使用ChatGLM模型生成回复,支持单线程和多线程方式。 |
|
||||
| request_llms\bridge_chatgpt.py | 基于GPT模型完成对话。 |
|
||||
| request_llms\bridge_jittorllms_llama.py | 使用JittorLLMs模型完成对话,支持单线程和多线程方式。 |
|
||||
| request_llms\bridge_jittorllms_pangualpha.py | 使用JittorLLMs模型完成对话,基于多进程和多线程方式。 |
|
||||
| request_llms\bridge_jittorllms_rwkv.py | 使用JittorLLMs模型完成聊天功能,提供包括历史信息、参数调节等在内的多个功能选项。 |
|
||||
| request_llms\bridge_moss.py | 加载Moss模型完成对话功能。 |
|
||||
| request_llms\bridge_newbing.py | 使用Newbing聊天机器人进行对话,支持单线程和多线程方式。 |
|
||||
| request_llms\bridge_newbingfree.py | 基于Bing chatbot API实现聊天机器人的文本生成功能。 |
|
||||
| request_llms\bridge_stackclaude.py | 基于Slack API实现Claude与用户的交互。 |
|
||||
| request_llms\bridge_tgui.py | 通过websocket实现聊天机器人与UI界面交互。 |
|
||||
| request_llms\edge_gpt.py | 调用Bing chatbot API提供聊天机器人服务。 |
|
||||
| request_llms\edge_gpt_free.py | 实现聊天机器人API,采用aiohttp和httpx工具库。 |
|
||||
| request_llms\test_llms.py | 对llm模型进行单元测试。 |
|
||||
| 程序整体功能 | 实现不同种类的聊天机器人,可以根据输入进行文本生成。 |
|
||||
|
@ -1184,7 +1184,7 @@
|
||||
"Call ChatGLM fail 不能正常加载ChatGLM的参数": "Call ChatGLM fail, unable to load parameters for ChatGLM",
|
||||
"不能正常加载ChatGLM的参数!": "Unable to load parameters for ChatGLM!",
|
||||
"多线程方法": "Multithreading method",
|
||||
"函数的说明请见 request_llm/bridge_all.py": "For function details, please see request_llm/bridge_all.py",
|
||||
"函数的说明请见 request_llms/bridge_all.py": "For function details, please see request_llms/bridge_all.py",
|
||||
"程序终止": "Program terminated",
|
||||
"单线程方法": "Single-threaded method",
|
||||
"等待ChatGLM响应中": "Waiting for response from ChatGLM",
|
||||
@ -1543,7 +1543,7 @@
|
||||
"str类型": "str type",
|
||||
"所有音频都总结完成了吗": "Are all audio summaries completed?",
|
||||
"SummaryAudioVideo内容": "SummaryAudioVideo content",
|
||||
"使用教程详情见 request_llm/README.md": "See request_llm/README.md for detailed usage instructions",
|
||||
"使用教程详情见 request_llms/README.md": "See request_llms/README.md for detailed usage instructions",
|
||||
"删除中间文件夹": "Delete intermediate folder",
|
||||
"Claude组件初始化成功": "Claude component initialized successfully",
|
||||
"$c$ 是光速": "$c$ is the speed of light",
|
||||
|
@ -782,7 +782,7 @@
|
||||
"主进程统一调用函数接口": "メインプロセスが関数インターフェースを統一的に呼び出します",
|
||||
"再例如一个包含了待处理文件的路径": "処理待ちのファイルを含むパスの例",
|
||||
"负责把学术论文准确翻译成中文": "学術論文を正確に中国語に翻訳する責任があります",
|
||||
"函数的说明请见 request_llm/bridge_all.py": "関数の説明については、request_llm/bridge_all.pyを参照してください",
|
||||
"函数的说明请见 request_llms/bridge_all.py": "関数の説明については、request_llms/bridge_all.pyを参照してください",
|
||||
"然后回车提交": "そしてEnterを押して提出してください",
|
||||
"防止爆token": "トークンの爆発を防止する",
|
||||
"Latex项目全文中译英": "LaTeXプロジェクト全文の中国語から英語への翻訳",
|
||||
@ -1616,7 +1616,7 @@
|
||||
"正在重试": "再試行中",
|
||||
"从而更全面地理解项目的整体功能": "プロジェクトの全体的な機能をより理解するために",
|
||||
"正在等您说完问题": "質問が完了するのをお待ちしています",
|
||||
"使用教程详情见 request_llm/README.md": "使用方法の詳細については、request_llm/README.mdを参照してください",
|
||||
"使用教程详情见 request_llms/README.md": "使用方法の詳細については、request_llms/README.mdを参照してください",
|
||||
"6.25 加入判定latex模板的代码": "6.25 テンプレートの判定コードを追加",
|
||||
"找不到任何音频或视频文件": "音声またはビデオファイルが見つかりません",
|
||||
"请求GPT模型的": "GPTモデルのリクエスト",
|
||||
|
@ -123,7 +123,7 @@
|
||||
"的第": "的第",
|
||||
"减少重复": "減少重複",
|
||||
"如果超过期限没有喂狗": "如果超過期限沒有餵狗",
|
||||
"函数的说明请见 request_llm/bridge_all.py": "函數的說明請見 request_llm/bridge_all.py",
|
||||
"函数的说明请见 request_llms/bridge_all.py": "函數的說明請見 request_llms/bridge_all.py",
|
||||
"第7步": "第7步",
|
||||
"说": "說",
|
||||
"中途接收可能的终止指令": "中途接收可能的終止指令",
|
||||
@ -1887,7 +1887,7 @@
|
||||
"请继续分析其他源代码": "請繼續分析其他源代碼",
|
||||
"质能方程式": "質能方程式",
|
||||
"功能尚不稳定": "功能尚不穩定",
|
||||
"使用教程详情见 request_llm/README.md": "使用教程詳情見 request_llm/README.md",
|
||||
"使用教程详情见 request_llms/README.md": "使用教程詳情見 request_llms/README.md",
|
||||
"从以上搜索结果中抽取信息": "從以上搜索結果中抽取信息",
|
||||
"虽然PDF生成失败了": "雖然PDF生成失敗了",
|
||||
"找图片": "尋找圖片",
|
||||
|
10
main.py
10
main.py
@ -7,14 +7,14 @@ def main():
|
||||
import gradio as gr
|
||||
if gr.__version__ not in ['3.32.6']:
|
||||
raise ModuleNotFoundError("使用项目内置Gradio获取最优体验! 请运行 `pip install -r requirements.txt` 指令安装内置Gradio及其他依赖, 详情信息见requirements.txt.")
|
||||
from request_llm.bridge_all import predict
|
||||
from request_llms.bridge_all import predict
|
||||
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, load_chat_cookies, DummyWith
|
||||
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
|
||||
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION = get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION')
|
||||
CHATBOT_HEIGHT, LAYOUT, AVAIL_LLM_MODELS, AUTO_CLEAR_TXT = get_conf('CHATBOT_HEIGHT', 'LAYOUT', 'AVAIL_LLM_MODELS', 'AUTO_CLEAR_TXT')
|
||||
ENABLE_AUDIO, AUTO_CLEAR_TXT, PATH_LOGGING, AVAIL_THEMES, THEME = get_conf('ENABLE_AUDIO', 'AUTO_CLEAR_TXT', 'PATH_LOGGING', 'AVAIL_THEMES', 'THEME')
|
||||
DARK_MODE, NUM_CUSTOM_BASIC_BTN, SSL_KEYFILE, SSL_CERTFILE = get_conf('DARK_MODE', 'NUM_CUSTOM_BASIC_BTN', 'SSL_KEYFILE', 'SSL_CERTFILE')
|
||||
INIT_SYS_PROMPT, = get_conf('INIT_SYS_PROMPT')
|
||||
INIT_SYS_PROMPT = get_conf('INIT_SYS_PROMPT')
|
||||
|
||||
# 如果WEB_PORT是-1, 则随机选取WEB端口
|
||||
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
|
||||
@ -48,7 +48,7 @@ def main():
|
||||
|
||||
# 高级函数插件
|
||||
from crazy_functional import get_crazy_functions
|
||||
DEFAULT_FN_GROUPS, = get_conf('DEFAULT_FN_GROUPS')
|
||||
DEFAULT_FN_GROUPS = get_conf('DEFAULT_FN_GROUPS')
|
||||
plugins = get_crazy_functions()
|
||||
all_plugin_groups = list(set([g for _, plugin in plugins.items() for g in plugin['Group'].split('|')]))
|
||||
match_group = lambda tags, groups: any([g in groups for g in tags.split('|')])
|
||||
@ -433,10 +433,10 @@ def main():
|
||||
server_port=PORT,
|
||||
favicon_path=os.path.join(os.path.dirname(__file__), "docs/logo.png"),
|
||||
auth=AUTHENTICATION if len(AUTHENTICATION) != 0 else None,
|
||||
blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile"])
|
||||
blocked_paths=["config.py","config_private.py","docker-compose.yml","Dockerfile","gpt_log/admin"])
|
||||
|
||||
# 如果需要在二级路径下运行
|
||||
# CUSTOM_PATH, = get_conf('CUSTOM_PATH')
|
||||
# CUSTOM_PATH = get_conf('CUSTOM_PATH')
|
||||
# if CUSTOM_PATH != "/":
|
||||
# from toolbox import run_gradio_in_subpath
|
||||
# run_gradio_in_subpath(demo, auth=AUTHENTICATION, port=PORT, custom_path=CUSTOM_PATH)
|
||||
|
@ -38,7 +38,7 @@ from toolbox import get_conf
|
||||
|
||||
CACHE_ONLY = os.environ.get('CACHE_ONLY', False)
|
||||
|
||||
CACHE_FOLDER, = get_conf('PATH_LOGGING')
|
||||
CACHE_FOLDER = get_conf('PATH_LOGGING')
|
||||
|
||||
blacklist = ['multi-language', CACHE_FOLDER, '.git', 'private_upload', 'multi_language.py', 'build', '.github', '.vscode', '__pycache__', 'venv']
|
||||
|
||||
|
@ -1,167 +0,0 @@
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
import threading
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf, ProxyNetworkActivate
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
load_message = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
#################################################################################
|
||||
class GetGLMHandle(Process):
|
||||
def __init__(self):
|
||||
super().__init__(daemon=True)
|
||||
self.parent, self.child = Pipe()
|
||||
self.chatglm_model = None
|
||||
self.chatglm_tokenizer = None
|
||||
self.info = ""
|
||||
self.success = True
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
def check_dependency(self):
|
||||
try:
|
||||
import sentencepiece
|
||||
self.info = "依赖检测通过"
|
||||
self.success = True
|
||||
except:
|
||||
self.info = "缺少ChatGLM的依赖,如果要使用ChatGLM,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
|
||||
self.success = False
|
||||
|
||||
def ready(self):
|
||||
return self.chatglm_model is not None
|
||||
|
||||
def run(self):
|
||||
# 子进程执行
|
||||
# 第一次运行,加载参数
|
||||
retry = 0
|
||||
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
|
||||
|
||||
if LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||
_model_name_ = "THUDM/chatglm2-6b-int4"
|
||||
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||
_model_name_ = "THUDM/chatglm2-6b-int8"
|
||||
else:
|
||||
_model_name_ = "THUDM/chatglm2-6b" # FP16
|
||||
|
||||
while True:
|
||||
try:
|
||||
with ProxyNetworkActivate('Download_LLM'):
|
||||
if self.chatglm_model is None:
|
||||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
||||
if device=='cpu':
|
||||
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
|
||||
else:
|
||||
self.chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
|
||||
self.chatglm_model = self.chatglm_model.eval()
|
||||
break
|
||||
else:
|
||||
break
|
||||
except:
|
||||
retry += 1
|
||||
if retry > 3:
|
||||
self.child.send('[Local Message] Call ChatGLM fail 不能正常加载ChatGLM的参数。')
|
||||
raise RuntimeError("不能正常加载ChatGLM的参数!")
|
||||
|
||||
while True:
|
||||
# 进入任务等待状态
|
||||
kwargs = self.child.recv()
|
||||
# 收到消息,开始请求
|
||||
try:
|
||||
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs):
|
||||
self.child.send(response)
|
||||
# # 中途接收可能的终止指令(如果有的话)
|
||||
# if self.child.poll():
|
||||
# command = self.child.recv()
|
||||
# if command == '[Terminate]': break
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
self.child.send('[Local Message] Call ChatGLM fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||
# 请求处理结束,开始下一个循环
|
||||
self.child.send('[Finish]')
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
# 主进程执行
|
||||
self.threadLock.acquire()
|
||||
self.parent.send(kwargs)
|
||||
while True:
|
||||
res = self.parent.recv()
|
||||
if res != '[Finish]':
|
||||
yield res
|
||||
else:
|
||||
break
|
||||
self.threadLock.release()
|
||||
|
||||
global glm_handle
|
||||
glm_handle = None
|
||||
#################################################################################
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
global glm_handle
|
||||
if glm_handle is None:
|
||||
glm_handle = GetGLMHandle()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glm_handle.info
|
||||
if not glm_handle.success:
|
||||
error = glm_handle.info
|
||||
glm_handle = None
|
||||
raise RuntimeError(error)
|
||||
|
||||
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
history_feedin.append(["What can I do?", sys_prompt])
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1: observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
global glm_handle
|
||||
if glm_handle is None:
|
||||
glm_handle = GetGLMHandle()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + glm_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not glm_handle.success:
|
||||
glm_handle = None
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
# 处理历史信息
|
||||
history_feedin = []
|
||||
history_feedin.append(["What can I do?", system_prompt] )
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
# 开始接收chatglm的回复
|
||||
response = "[Local Message]: 等待ChatGLM响应中 ..."
|
||||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == "[Local Message]: 等待ChatGLM响应中 ...":
|
||||
response = "[Local Message]: ChatGLM响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
@ -1,180 +0,0 @@
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
import threading
|
||||
import importlib
|
||||
from toolbox import update_ui, get_conf, Singleton
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
def SingletonLocalLLM(cls):
|
||||
"""
|
||||
一个单实例装饰器
|
||||
"""
|
||||
_instance = {}
|
||||
def _singleton(*args, **kargs):
|
||||
if cls not in _instance:
|
||||
_instance[cls] = cls(*args, **kargs)
|
||||
return _instance[cls]
|
||||
elif _instance[cls].corrupted:
|
||||
_instance[cls] = cls(*args, **kargs)
|
||||
return _instance[cls]
|
||||
else:
|
||||
return _instance[cls]
|
||||
return _singleton
|
||||
|
||||
class LocalLLMHandle(Process):
|
||||
def __init__(self):
|
||||
# ⭐主进程执行
|
||||
super().__init__(daemon=True)
|
||||
self.corrupted = False
|
||||
self.load_model_info()
|
||||
self.parent, self.child = Pipe()
|
||||
self.running = True
|
||||
self._model = None
|
||||
self._tokenizer = None
|
||||
self.info = ""
|
||||
self.check_dependency()
|
||||
self.start()
|
||||
self.threadLock = threading.Lock()
|
||||
|
||||
def load_model_info(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
self.model_name = ""
|
||||
self.cmd_to_install = ""
|
||||
|
||||
def load_model_and_tokenizer(self):
|
||||
"""
|
||||
This function should return the model and the tokenizer
|
||||
"""
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
|
||||
def llm_stream_generator(self, **kwargs):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
"""
|
||||
import something that will raise error if the user does not install requirement_*.txt
|
||||
"""
|
||||
# ⭐主进程执行
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
|
||||
def check_dependency(self):
|
||||
# ⭐主进程执行
|
||||
try:
|
||||
self.try_to_import_special_deps()
|
||||
self.info = "依赖检测通过"
|
||||
self.running = True
|
||||
except:
|
||||
self.info = f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。"
|
||||
self.running = False
|
||||
|
||||
def run(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
# 第一次运行,加载参数
|
||||
try:
|
||||
self._model, self._tokenizer = self.load_model_and_tokenizer()
|
||||
except:
|
||||
self.running = False
|
||||
from toolbox import trimmed_format_exc
|
||||
self.child.send(f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||
self.child.send('[FinishBad]')
|
||||
raise RuntimeError(f"不能正常加载{self.model_name}的参数!")
|
||||
|
||||
while True:
|
||||
# 进入任务等待状态
|
||||
kwargs = self.child.recv()
|
||||
# 收到消息,开始请求
|
||||
try:
|
||||
for response_full in self.llm_stream_generator(**kwargs):
|
||||
self.child.send(response_full)
|
||||
self.child.send('[Finish]')
|
||||
# 请求处理结束,开始下一个循环
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
self.child.send(f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
# ⭐主进程执行
|
||||
self.threadLock.acquire()
|
||||
self.parent.send(kwargs)
|
||||
while True:
|
||||
res = self.parent.recv()
|
||||
if res == '[Finish]':
|
||||
break
|
||||
if res == '[FinishBad]':
|
||||
self.running = False
|
||||
self.corrupted = True
|
||||
break
|
||||
else:
|
||||
yield res
|
||||
self.threadLock.release()
|
||||
|
||||
|
||||
|
||||
def get_local_llm_predict_fns(LLMSingletonClass, model_name):
|
||||
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
_llm_handle = LLMSingletonClass()
|
||||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + _llm_handle.info
|
||||
if not _llm_handle.running: raise RuntimeError(_llm_handle.info)
|
||||
|
||||
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
history_feedin.append([sys_prompt, "Certainly!"])
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
⭐单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
_llm_handle = LLMSingletonClass()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.info)
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not _llm_handle.running: raise RuntimeError(_llm_handle.info)
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
# 处理历史信息
|
||||
history_feedin = []
|
||||
history_feedin.append([system_prompt, "Certainly!"])
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
# 开始接收回复
|
||||
response = f"[Local Message]: 等待{model_name}响应中 ..."
|
||||
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == f"[Local Message]: 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message]: {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
return predict_no_ui_long_connection, predict
|
@ -2,7 +2,7 @@
|
||||
|
||||
## ChatGLM
|
||||
|
||||
- 安装依赖 `pip install -r request_llm/requirements_chatglm.txt`
|
||||
- 安装依赖 `pip install -r request_llms/requirements_chatglm.txt`
|
||||
- 修改配置,在config.py中将LLM_MODEL的值改为"chatglm"
|
||||
|
||||
``` sh
|
@ -19,8 +19,8 @@ from .bridge_chatgpt import predict as chatgpt_ui
|
||||
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
|
||||
from .bridge_chatglm import predict as chatglm_ui
|
||||
|
||||
from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui
|
||||
from .bridge_chatglm import predict as chatglm_ui
|
||||
from .bridge_chatglm3 import predict_no_ui_long_connection as chatglm3_noui
|
||||
from .bridge_chatglm3 import predict as chatglm3_ui
|
||||
|
||||
from .bridge_qianfan import predict_no_ui_long_connection as qianfan_noui
|
||||
from .bridge_qianfan import predict as qianfan_ui
|
||||
@ -56,7 +56,7 @@ if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||
# 兼容旧版的配置
|
||||
try:
|
||||
API_URL, = get_conf("API_URL")
|
||||
API_URL = get_conf("API_URL")
|
||||
if API_URL != "https://api.openai.com/v1/chat/completions":
|
||||
openai_endpoint = API_URL
|
||||
print("警告!API_URL配置选项将被弃用,请更换为API_URL_REDIRECT配置")
|
||||
@ -208,6 +208,14 @@ model_info = {
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"chatglm3": {
|
||||
"fn_with_ui": chatglm3_ui,
|
||||
"fn_without_ui": chatglm3_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 8192,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
},
|
||||
"qianfan": {
|
||||
"fn_with_ui": qianfan_ui,
|
||||
"fn_without_ui": qianfan_noui,
|
||||
@ -483,9 +491,25 @@ if "llama2" in AVAIL_LLM_MODELS: # llama2
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
if "zhipuai" in AVAIL_LLM_MODELS: # zhipuai
|
||||
try:
|
||||
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
||||
from .bridge_zhipu import predict as zhipu_ui
|
||||
model_info.update({
|
||||
"zhipuai": {
|
||||
"fn_with_ui": zhipu_ui,
|
||||
"fn_without_ui": zhipu_noui,
|
||||
"endpoint": None,
|
||||
"max_token": 4096,
|
||||
"tokenizer": tokenizer_gpt35,
|
||||
"token_cnt": get_token_num_gpt35,
|
||||
}
|
||||
})
|
||||
except:
|
||||
print(trimmed_format_exc())
|
||||
|
||||
# <-- 用于定义和切换多个azure模型 -->
|
||||
AZURE_CFG_ARRAY, = get_conf("AZURE_CFG_ARRAY")
|
||||
AZURE_CFG_ARRAY = get_conf("AZURE_CFG_ARRAY")
|
||||
if len(AZURE_CFG_ARRAY) > 0:
|
||||
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items():
|
||||
# 可能会覆盖之前的配置,但这是意料之中的
|
79
request_llms/bridge_chatglm.py
Normal file
79
request_llms/bridge_chatglm.py
Normal file
@ -0,0 +1,79 @@
|
||||
model_name = "ChatGLM"
|
||||
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
|
||||
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from toolbox import get_conf, ProxyNetworkActivate
|
||||
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
|
||||
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 Local Model
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
@SingletonLocalLLM
|
||||
class GetGLM2Handle(LocalLLMHandle):
|
||||
|
||||
def load_model_info(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
self.model_name = model_name
|
||||
self.cmd_to_install = cmd_to_install
|
||||
|
||||
def load_model_and_tokenizer(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
import os, glob
|
||||
import os
|
||||
import platform
|
||||
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
|
||||
|
||||
if LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||
_model_name_ = "THUDM/chatglm2-6b-int4"
|
||||
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||
_model_name_ = "THUDM/chatglm2-6b-int8"
|
||||
else:
|
||||
_model_name_ = "THUDM/chatglm2-6b" # FP16
|
||||
|
||||
with ProxyNetworkActivate('Download_LLM'):
|
||||
chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
||||
if device=='cpu':
|
||||
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float()
|
||||
else:
|
||||
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda()
|
||||
chatglm_model = chatglm_model.eval()
|
||||
|
||||
self._model = chatglm_model
|
||||
self._tokenizer = chatglm_tokenizer
|
||||
return self._model, self._tokenizer
|
||||
|
||||
def llm_stream_generator(self, **kwargs):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
def adaptor(kwargs):
|
||||
query = kwargs['query']
|
||||
max_length = kwargs['max_length']
|
||||
top_p = kwargs['top_p']
|
||||
temperature = kwargs['temperature']
|
||||
history = kwargs['history']
|
||||
return query, max_length, top_p, temperature, history
|
||||
|
||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||
|
||||
for response, history in self._model.stream_chat(self._tokenizer,
|
||||
query,
|
||||
history,
|
||||
max_length=max_length,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
):
|
||||
yield response
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
# import something that will raise error if the user does not install requirement_*.txt
|
||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||
import importlib
|
||||
# importlib.import_module('modelscope')
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 GPT-Academic Interface
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM2Handle, model_name)
|
78
request_llms/bridge_chatglm3.py
Normal file
78
request_llms/bridge_chatglm3.py
Normal file
@ -0,0 +1,78 @@
|
||||
model_name = "ChatGLM3"
|
||||
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
|
||||
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
from toolbox import get_conf, ProxyNetworkActivate
|
||||
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
|
||||
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 Local Model
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
@SingletonLocalLLM
|
||||
class GetGLM3Handle(LocalLLMHandle):
|
||||
|
||||
def load_model_info(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
self.model_name = model_name
|
||||
self.cmd_to_install = cmd_to_install
|
||||
|
||||
def load_model_and_tokenizer(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
import os, glob
|
||||
import os
|
||||
import platform
|
||||
LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE')
|
||||
|
||||
if LOCAL_MODEL_QUANT == "INT4": # INT4
|
||||
_model_name_ = "THUDM/chatglm3-6b-int4"
|
||||
elif LOCAL_MODEL_QUANT == "INT8": # INT8
|
||||
_model_name_ = "THUDM/chatglm3-6b-int8"
|
||||
else:
|
||||
_model_name_ = "THUDM/chatglm3-6b" # FP16
|
||||
with ProxyNetworkActivate('Download_LLM'):
|
||||
chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True)
|
||||
if device=='cpu':
|
||||
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True, device='cpu').float()
|
||||
else:
|
||||
chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True, device='cuda')
|
||||
chatglm_model = chatglm_model.eval()
|
||||
|
||||
self._model = chatglm_model
|
||||
self._tokenizer = chatglm_tokenizer
|
||||
return self._model, self._tokenizer
|
||||
|
||||
def llm_stream_generator(self, **kwargs):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
def adaptor(kwargs):
|
||||
query = kwargs['query']
|
||||
max_length = kwargs['max_length']
|
||||
top_p = kwargs['top_p']
|
||||
temperature = kwargs['temperature']
|
||||
history = kwargs['history']
|
||||
return query, max_length, top_p, temperature, history
|
||||
|
||||
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
||||
|
||||
for response, history in self._model.stream_chat(self._tokenizer,
|
||||
query,
|
||||
history,
|
||||
max_length=max_length,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
):
|
||||
yield response
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
# import something that will raise error if the user does not install requirement_*.txt
|
||||
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
||||
import importlib
|
||||
# importlib.import_module('modelscope')
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
# 🔌💻 GPT-Academic Interface
|
||||
# ------------------------------------------------------------------------------------------------------------------------
|
||||
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM3Handle, model_name, history_format='chatglm3')
|
@ -44,7 +44,7 @@ class GetGLMFTHandle(Process):
|
||||
self.info = "依赖检测通过"
|
||||
self.success = True
|
||||
except:
|
||||
self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_chatglm.txt`安装ChatGLM的依赖。"
|
||||
self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_chatglm.txt`安装ChatGLM的依赖。"
|
||||
self.success = False
|
||||
|
||||
def ready(self):
|
||||
@ -59,11 +59,11 @@ class GetGLMFTHandle(Process):
|
||||
if self.chatglmft_model is None:
|
||||
from transformers import AutoConfig
|
||||
import torch
|
||||
# conf = 'request_llm/current_ptune_model.json'
|
||||
# conf = 'request_llms/current_ptune_model.json'
|
||||
# if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息')
|
||||
# with open(conf, 'r', encoding='utf8') as f:
|
||||
# model_args = json.loads(f.read())
|
||||
CHATGLM_PTUNING_CHECKPOINT, = get_conf('CHATGLM_PTUNING_CHECKPOINT')
|
||||
CHATGLM_PTUNING_CHECKPOINT = get_conf('CHATGLM_PTUNING_CHECKPOINT')
|
||||
assert os.path.exists(CHATGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点"
|
||||
conf = os.path.join(CHATGLM_PTUNING_CHECKPOINT, "config.json")
|
||||
with open(conf, 'r', encoding='utf8') as f:
|
||||
@ -140,7 +140,7 @@ glmft_handle = None
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
global glmft_handle
|
||||
if glmft_handle is None:
|
||||
@ -171,7 +171,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
@ -195,13 +195,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
# 开始接收chatglmft的回复
|
||||
response = "[Local Message]: 等待ChatGLMFT响应中 ..."
|
||||
response = "[Local Message] 等待ChatGLMFT响应中 ..."
|
||||
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == "[Local Message]: 等待ChatGLMFT响应中 ...":
|
||||
response = "[Local Message]: ChatGLMFT响应异常 ..."
|
||||
if response == "[Local Message] 等待ChatGLMFT响应中 ...":
|
||||
response = "[Local Message] ChatGLMFT响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
@ -1,5 +1,5 @@
|
||||
model_name = "ChatGLM-ONNX"
|
||||
cmd_to_install = "`pip install -r request_llm/requirements_chatglm_onnx.txt`"
|
||||
cmd_to_install = "`pip install -r request_llms/requirements_chatglm_onnx.txt`"
|
||||
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
@ -28,13 +28,13 @@ class GetONNXGLMHandle(LocalLLMHandle):
|
||||
def load_model_and_tokenizer(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
import os, glob
|
||||
if not len(glob.glob("./request_llm/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/*.bin")) >= 7: # 该模型有七个 bin 文件
|
||||
if not len(glob.glob("./request_llms/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/*.bin")) >= 7: # 该模型有七个 bin 文件
|
||||
from huggingface_hub import snapshot_download
|
||||
snapshot_download(repo_id="K024/ChatGLM-6b-onnx-u8s8", local_dir="./request_llm/ChatGLM-6b-onnx-u8s8")
|
||||
snapshot_download(repo_id="K024/ChatGLM-6b-onnx-u8s8", local_dir="./request_llms/ChatGLM-6b-onnx-u8s8")
|
||||
def create_model():
|
||||
return ChatGLMModel(
|
||||
tokenizer_path = "./request_llm/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/sentencepiece.model",
|
||||
onnx_model_path = "./request_llm/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/chatglm-6b-int8.onnx"
|
||||
tokenizer_path = "./request_llms/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/sentencepiece.model",
|
||||
onnx_model_path = "./request_llms/ChatGLM-6b-onnx-u8s8/chatglm-6b-int8-onnx-merged/chatglm-6b-int8.onnx"
|
||||
)
|
||||
self._model = create_model()
|
||||
return self._model, None
|
@ -1,5 +1,5 @@
|
||||
model_name = "InternLM"
|
||||
cmd_to_install = "`pip install -r request_llm/requirements_chatglm.txt`"
|
||||
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
import time
|
||||
@ -52,7 +52,7 @@ class GetInternlmHandle(LocalLLMHandle):
|
||||
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||||
device = get_conf('LOCAL_MODEL_DEVICE')
|
||||
if self._model is None:
|
||||
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
|
||||
if device=='cpu':
|
@ -28,8 +28,8 @@ class GetGLMHandle(Process):
|
||||
self.success = True
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
|
||||
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
|
||||
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
|
||||
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llms/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
|
||||
r"警告:安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境!" + trimmed_format_exc()
|
||||
self.success = False
|
||||
|
||||
@ -45,15 +45,15 @@ class GetGLMHandle(Process):
|
||||
env = os.environ.get("PATH", "")
|
||||
os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
|
||||
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
|
||||
os.chdir(root_dir_assume + '/request_llm/jittorllms')
|
||||
sys.path.append(root_dir_assume + '/request_llm/jittorllms')
|
||||
os.chdir(root_dir_assume + '/request_llms/jittorllms')
|
||||
sys.path.append(root_dir_assume + '/request_llms/jittorllms')
|
||||
validate_path() # validate path so you can run from base directory
|
||||
|
||||
def load_model():
|
||||
import types
|
||||
try:
|
||||
if self.jittorllms_model is None:
|
||||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||||
device = get_conf('LOCAL_MODEL_DEVICE')
|
||||
from .jittorllms.models import get_model
|
||||
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||
args_dict = {'model': 'llama'}
|
||||
@ -109,7 +109,7 @@ llama_glm_handle = None
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
global llama_glm_handle
|
||||
if llama_glm_handle is None:
|
||||
@ -140,7 +140,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
@ -163,13 +163,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
# 开始接收jittorllms的回复
|
||||
response = "[Local Message]: 等待jittorllms响应中 ..."
|
||||
response = "[Local Message] 等待jittorllms响应中 ..."
|
||||
for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == "[Local Message]: 等待jittorllms响应中 ...":
|
||||
response = "[Local Message]: jittorllms响应异常 ..."
|
||||
if response == "[Local Message] 等待jittorllms响应中 ...":
|
||||
response = "[Local Message] jittorllms响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
@ -28,8 +28,8 @@ class GetGLMHandle(Process):
|
||||
self.success = True
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
|
||||
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
|
||||
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
|
||||
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llms/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
|
||||
r"警告:安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境!" + trimmed_format_exc()
|
||||
self.success = False
|
||||
|
||||
@ -45,15 +45,15 @@ class GetGLMHandle(Process):
|
||||
env = os.environ.get("PATH", "")
|
||||
os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
|
||||
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
|
||||
os.chdir(root_dir_assume + '/request_llm/jittorllms')
|
||||
sys.path.append(root_dir_assume + '/request_llm/jittorllms')
|
||||
os.chdir(root_dir_assume + '/request_llms/jittorllms')
|
||||
sys.path.append(root_dir_assume + '/request_llms/jittorllms')
|
||||
validate_path() # validate path so you can run from base directory
|
||||
|
||||
def load_model():
|
||||
import types
|
||||
try:
|
||||
if self.jittorllms_model is None:
|
||||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||||
device = get_conf('LOCAL_MODEL_DEVICE')
|
||||
from .jittorllms.models import get_model
|
||||
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||
args_dict = {'model': 'pangualpha'}
|
||||
@ -109,7 +109,7 @@ pangu_glm_handle = None
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
global pangu_glm_handle
|
||||
if pangu_glm_handle is None:
|
||||
@ -140,7 +140,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
@ -163,13 +163,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
# 开始接收jittorllms的回复
|
||||
response = "[Local Message]: 等待jittorllms响应中 ..."
|
||||
response = "[Local Message] 等待jittorllms响应中 ..."
|
||||
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == "[Local Message]: 等待jittorllms响应中 ...":
|
||||
response = "[Local Message]: jittorllms响应异常 ..."
|
||||
if response == "[Local Message] 等待jittorllms响应中 ...":
|
||||
response = "[Local Message] jittorllms响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
@ -28,8 +28,8 @@ class GetGLMHandle(Process):
|
||||
self.success = True
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
|
||||
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
|
||||
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
|
||||
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llms/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
|
||||
r"警告:安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境!" + trimmed_format_exc()
|
||||
self.success = False
|
||||
|
||||
@ -45,15 +45,15 @@ class GetGLMHandle(Process):
|
||||
env = os.environ.get("PATH", "")
|
||||
os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
|
||||
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
|
||||
os.chdir(root_dir_assume + '/request_llm/jittorllms')
|
||||
sys.path.append(root_dir_assume + '/request_llm/jittorllms')
|
||||
os.chdir(root_dir_assume + '/request_llms/jittorllms')
|
||||
sys.path.append(root_dir_assume + '/request_llms/jittorllms')
|
||||
validate_path() # validate path so you can run from base directory
|
||||
|
||||
def load_model():
|
||||
import types
|
||||
try:
|
||||
if self.jittorllms_model is None:
|
||||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||||
device = get_conf('LOCAL_MODEL_DEVICE')
|
||||
from .jittorllms.models import get_model
|
||||
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||||
args_dict = {'model': 'chatrwkv'}
|
||||
@ -109,7 +109,7 @@ rwkv_glm_handle = None
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
global rwkv_glm_handle
|
||||
if rwkv_glm_handle is None:
|
||||
@ -140,7 +140,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
@ -163,13 +163,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
# 开始接收jittorllms的回复
|
||||
response = "[Local Message]: 等待jittorllms响应中 ..."
|
||||
response = "[Local Message] 等待jittorllms响应中 ..."
|
||||
for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == "[Local Message]: 等待jittorllms响应中 ...":
|
||||
response = "[Local Message]: jittorllms响应异常 ..."
|
||||
if response == "[Local Message] 等待jittorllms响应中 ...":
|
||||
response = "[Local Message] jittorllms响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
@ -1,5 +1,5 @@
|
||||
model_name = "LLaMA"
|
||||
cmd_to_install = "`pip install -r request_llm/requirements_chatglm.txt`"
|
||||
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
|
||||
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
@ -24,12 +24,12 @@ class GetGLMHandle(Process):
|
||||
def check_dependency(self): # 主进程执行
|
||||
try:
|
||||
import datasets, os
|
||||
assert os.path.exists('request_llm/moss/models')
|
||||
assert os.path.exists('request_llms/moss/models')
|
||||
self.info = "依赖检测通过"
|
||||
self.success = True
|
||||
except:
|
||||
self.info = """
|
||||
缺少MOSS的依赖,如果要使用MOSS,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_moss.txt`和`git clone https://github.com/OpenLMLab/MOSS.git request_llm/moss`安装MOSS的依赖。
|
||||
缺少MOSS的依赖,如果要使用MOSS,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_moss.txt`和`git clone https://github.com/OpenLMLab/MOSS.git request_llms/moss`安装MOSS的依赖。
|
||||
"""
|
||||
self.success = False
|
||||
return self.success
|
||||
@ -110,8 +110,8 @@ class GetGLMHandle(Process):
|
||||
def validate_path():
|
||||
import os, sys
|
||||
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
|
||||
os.chdir(root_dir_assume + '/request_llm/moss')
|
||||
sys.path.append(root_dir_assume + '/request_llm/moss')
|
||||
os.chdir(root_dir_assume + '/request_llms/moss')
|
||||
sys.path.append(root_dir_assume + '/request_llms/moss')
|
||||
validate_path() # validate path so you can run from base directory
|
||||
|
||||
try:
|
||||
@ -176,7 +176,7 @@ moss_handle = None
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
global moss_handle
|
||||
if moss_handle is None:
|
||||
@ -206,7 +206,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
@ -219,7 +219,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
moss_handle = None
|
||||
return
|
||||
else:
|
||||
response = "[Local Message]: 等待MOSS响应中 ..."
|
||||
response = "[Local Message] 等待MOSS响应中 ..."
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
@ -238,7 +238,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == "[Local Message]: 等待MOSS响应中 ...":
|
||||
response = "[Local Message]: MOSS响应异常 ..."
|
||||
if response == "[Local Message] 等待MOSS响应中 ...":
|
||||
response = "[Local Message] MOSS响应异常 ..."
|
||||
history.extend([inputs, response.strip('<|MOSS|>: ')])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
@ -54,7 +54,7 @@ class NewBingHandle(Process):
|
||||
self.info = "依赖检测通过,等待NewBing响应。注意目前不能多人同时调用NewBing接口(有线程锁),否则将导致每个人的NewBing问询历史互相渗透。调用NewBing时,会自动使用已配置的代理。"
|
||||
self.success = True
|
||||
except:
|
||||
self.info = "缺少的依赖,如果要使用Newbing,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_newbing.txt`安装Newbing的依赖。"
|
||||
self.info = "缺少的依赖,如果要使用Newbing,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_newbing.txt`安装Newbing的依赖。"
|
||||
self.success = False
|
||||
|
||||
def ready(self):
|
||||
@ -62,8 +62,8 @@ class NewBingHandle(Process):
|
||||
|
||||
async def async_run(self):
|
||||
# 读取配置
|
||||
NEWBING_STYLE, = get_conf('NEWBING_STYLE')
|
||||
from request_llm.bridge_all import model_info
|
||||
NEWBING_STYLE = get_conf('NEWBING_STYLE')
|
||||
from request_llms.bridge_all import model_info
|
||||
endpoint = model_info['newbing']['endpoint']
|
||||
while True:
|
||||
# 等待
|
||||
@ -181,7 +181,7 @@ newbingfree_handle = None
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
global newbingfree_handle
|
||||
if (newbingfree_handle is None) or (not newbingfree_handle.success):
|
||||
@ -199,7 +199,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
if len(observe_window) >= 1: observe_window[0] = "[Local Message]: 等待NewBing响应中 ..."
|
||||
if len(observe_window) >= 1: observe_window[0] = "[Local Message] 等待NewBing响应中 ..."
|
||||
for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1: observe_window[0] = preprocess_newbing_out_simple(response)
|
||||
if len(observe_window) >= 2:
|
||||
@ -210,9 +210,9 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, "[Local Message]: 等待NewBing响应中 ..."))
|
||||
chatbot.append((inputs, "[Local Message] 等待NewBing响应中 ..."))
|
||||
|
||||
global newbingfree_handle
|
||||
if (newbingfree_handle is None) or (not newbingfree_handle.success):
|
||||
@ -231,13 +231,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||||
|
||||
chatbot[-1] = (inputs, "[Local Message]: 等待NewBing响应中 ...")
|
||||
response = "[Local Message]: 等待NewBing响应中 ..."
|
||||
chatbot[-1] = (inputs, "[Local Message] 等待NewBing响应中 ...")
|
||||
response = "[Local Message] 等待NewBing响应中 ..."
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, preprocess_newbing_out(response))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="NewBing响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
if response == "[Local Message]: 等待NewBing响应中 ...": response = "[Local Message]: NewBing响应异常,请刷新界面重试 ..."
|
||||
if response == "[Local Message] 等待NewBing响应中 ...": response = "[Local Message] NewBing响应异常,请刷新界面重试 ..."
|
||||
history.extend([inputs, response])
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {response}')
|
@ -75,7 +75,7 @@ def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
|
||||
|
||||
|
||||
def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
||||
BAIDU_CLOUD_QIANFAN_MODEL, = get_conf('BAIDU_CLOUD_QIANFAN_MODEL')
|
||||
BAIDU_CLOUD_QIANFAN_MODEL = get_conf('BAIDU_CLOUD_QIANFAN_MODEL')
|
||||
|
||||
url_lib = {
|
||||
"ERNIE-Bot-4": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro",
|
||||
@ -120,7 +120,7 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
watch_dog_patience = 5
|
||||
response = ""
|
||||
@ -135,7 +135,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
⭐单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
@ -159,8 +159,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
return
|
||||
|
||||
# 总结输出
|
||||
response = f"[Local Message]: {model_name}响应异常 ..."
|
||||
if response == f"[Local Message]: 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message]: {model_name}响应异常 ..."
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
@ -1,5 +1,5 @@
|
||||
model_name = "Qwen"
|
||||
cmd_to_install = "`pip install -r request_llm/requirements_qwen.txt`"
|
||||
cmd_to_install = "`pip install -r request_llms/requirements_qwen.txt`"
|
||||
|
||||
|
||||
from transformers import AutoModel, AutoTokenizer
|
@ -8,7 +8,7 @@ from multiprocessing import Process, Pipe
|
||||
model_name = '星火认知大模型'
|
||||
|
||||
def validate_key():
|
||||
XFYUN_APPID, = get_conf('XFYUN_APPID', )
|
||||
XFYUN_APPID = get_conf('XFYUN_APPID')
|
||||
if XFYUN_APPID == '00000000' or XFYUN_APPID == '':
|
||||
return False
|
||||
return True
|
||||
@ -16,7 +16,7 @@ def validate_key():
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
watch_dog_patience = 5
|
||||
response = ""
|
||||
@ -36,13 +36,13 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
⭐单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message]: 请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET", chatbot=chatbot, history=history, delay=0)
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
@ -57,7 +57,7 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == f"[Local Message]: 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message]: {model_name}响应异常 ..."
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
@ -36,7 +36,7 @@ try:
|
||||
CHANNEL_ID = None
|
||||
|
||||
async def open_channel(self):
|
||||
response = await self.conversations_open(users=get_conf('SLACK_CLAUDE_BOT_ID')[0])
|
||||
response = await self.conversations_open(users=get_conf('SLACK_CLAUDE_BOT_ID'))
|
||||
self.CHANNEL_ID = response["channel"]["id"]
|
||||
|
||||
async def chat(self, text):
|
||||
@ -51,7 +51,7 @@ try:
|
||||
# TODO:暂时不支持历史消息,因为在同一个频道里存在多人使用时历史消息渗透问题
|
||||
resp = await self.conversations_history(channel=self.CHANNEL_ID, oldest=self.LAST_TS, limit=1)
|
||||
msg = [msg for msg in resp["messages"]
|
||||
if msg.get("user") == get_conf('SLACK_CLAUDE_BOT_ID')[0]]
|
||||
if msg.get("user") == get_conf('SLACK_CLAUDE_BOT_ID')]
|
||||
return msg
|
||||
except (SlackApiError, KeyError) as e:
|
||||
raise RuntimeError(f"获取Slack消息失败。")
|
||||
@ -99,7 +99,7 @@ class ClaudeHandle(Process):
|
||||
self.info = "依赖检测通过,等待Claude响应。注意目前不能多人同时调用Claude接口(有线程锁),否则将导致每个人的Claude问询历史互相渗透。调用Claude时,会自动使用已配置的代理。"
|
||||
self.success = True
|
||||
except:
|
||||
self.info = "缺少的依赖,如果要使用Claude,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_slackclaude.txt`安装Claude的依赖,然后重启程序。"
|
||||
self.info = "缺少的依赖,如果要使用Claude,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_slackclaude.txt`安装Claude的依赖,然后重启程序。"
|
||||
self.success = False
|
||||
|
||||
def ready(self):
|
||||
@ -146,14 +146,14 @@ class ClaudeHandle(Process):
|
||||
self.local_history = []
|
||||
if (self.claude_model is None) or (not self.success):
|
||||
# 代理设置
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
if proxies is None:
|
||||
self.proxies_https = None
|
||||
else:
|
||||
self.proxies_https = proxies['https']
|
||||
|
||||
try:
|
||||
SLACK_CLAUDE_USER_TOKEN, = get_conf('SLACK_CLAUDE_USER_TOKEN')
|
||||
SLACK_CLAUDE_USER_TOKEN = get_conf('SLACK_CLAUDE_USER_TOKEN')
|
||||
self.claude_model = SlackClient(token=SLACK_CLAUDE_USER_TOKEN, proxy=self.proxies_https)
|
||||
print('Claude组件初始化成功。')
|
||||
except:
|
||||
@ -204,7 +204,7 @@ claude_handle = None
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||
"""
|
||||
多线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
global claude_handle
|
||||
if (claude_handle is None) or (not claude_handle.success):
|
||||
@ -222,7 +222,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
observe_window[0] = "[Local Message]: 等待Claude响应中 ..."
|
||||
observe_window[0] = "[Local Message] 等待Claude响应中 ..."
|
||||
for response in claude_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
observe_window[0] = preprocess_newbing_out_simple(response)
|
||||
if len(observe_window) >= 2:
|
||||
@ -234,9 +234,9 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||
"""
|
||||
单线程方法
|
||||
函数的说明请见 request_llm/bridge_all.py
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, "[Local Message]: 等待Claude响应中 ..."))
|
||||
chatbot.append((inputs, "[Local Message] 等待Claude响应中 ..."))
|
||||
|
||||
global claude_handle
|
||||
if (claude_handle is None) or (not claude_handle.success):
|
||||
@ -255,14 +255,14 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]])
|
||||
|
||||
chatbot[-1] = (inputs, "[Local Message]: 等待Claude响应中 ...")
|
||||
response = "[Local Message]: 等待Claude响应中 ..."
|
||||
chatbot[-1] = (inputs, "[Local Message] 等待Claude响应中 ...")
|
||||
response = "[Local Message] 等待Claude响应中 ..."
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Claude响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
for response in claude_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt):
|
||||
chatbot[-1] = (inputs, preprocess_newbing_out(response))
|
||||
yield from update_ui(chatbot=chatbot, history=history, msg="Claude响应缓慢,尚未完成全部响应,请耐心完成后再提交新问题。")
|
||||
if response == "[Local Message]: 等待Claude响应中 ...":
|
||||
response = "[Local Message]: Claude响应异常,请刷新界面重试 ..."
|
||||
if response == "[Local Message] 等待Claude响应中 ...":
|
||||
response = "[Local Message] Claude响应异常,请刷新界面重试 ..."
|
||||
history.extend([inputs, response])
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {response}')
|
59
request_llms/bridge_zhipu.py
Normal file
59
request_llms/bridge_zhipu.py
Normal file
@ -0,0 +1,59 @@
|
||||
|
||||
import time
|
||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
||||
|
||||
model_name = '智谱AI大模型'
|
||||
|
||||
def validate_key():
|
||||
ZHIPUAI_API_KEY = get_conf("ZHIPUAI_API_KEY")
|
||||
if ZHIPUAI_API_KEY == '': return False
|
||||
return True
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
⭐多线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
watch_dog_patience = 5
|
||||
response = ""
|
||||
|
||||
if validate_key() is False:
|
||||
raise RuntimeError('请配置ZHIPUAI_API_KEY')
|
||||
|
||||
from .com_zhipuapi import ZhipuRequestInstance
|
||||
sri = ZhipuRequestInstance()
|
||||
for response in sri.generate(inputs, llm_kwargs, history, sys_prompt):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||
"""
|
||||
⭐单线程方法
|
||||
函数的说明请见 request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
if validate_key() is False:
|
||||
yield from update_ui_lastest_msg(lastmsg="[Local Message] 请配置ZHIPUAI_API_KEY", chatbot=chatbot, history=history, delay=0)
|
||||
return
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||
|
||||
# 开始接收回复
|
||||
from .com_zhipuapi import ZhipuRequestInstance
|
||||
sri = ZhipuRequestInstance()
|
||||
for response in sri.generate(inputs, llm_kwargs, history, system_prompt):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
67
request_llms/com_zhipuapi.py
Normal file
67
request_llms/com_zhipuapi.py
Normal file
@ -0,0 +1,67 @@
|
||||
from toolbox import get_conf
|
||||
import threading
|
||||
import logging
|
||||
|
||||
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
||||
|
||||
class ZhipuRequestInstance():
|
||||
def __init__(self):
|
||||
|
||||
self.time_to_yield_event = threading.Event()
|
||||
self.time_to_exit_event = threading.Event()
|
||||
|
||||
self.result_buf = ""
|
||||
|
||||
def generate(self, inputs, llm_kwargs, history, system_prompt):
|
||||
# import _thread as thread
|
||||
import zhipuai
|
||||
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
|
||||
zhipuai.api_key = ZHIPUAI_API_KEY
|
||||
self.result_buf = ""
|
||||
response = zhipuai.model_api.sse_invoke(
|
||||
model=ZHIPUAI_MODEL,
|
||||
prompt=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
|
||||
top_p=llm_kwargs['top_p'],
|
||||
temperature=llm_kwargs['temperature'],
|
||||
)
|
||||
for event in response.events():
|
||||
if event.event == "add":
|
||||
self.result_buf += event.data
|
||||
yield self.result_buf
|
||||
elif event.event == "error" or event.event == "interrupted":
|
||||
raise RuntimeError("Unknown error:" + event.data)
|
||||
elif event.event == "finish":
|
||||
yield self.result_buf
|
||||
break
|
||||
else:
|
||||
raise RuntimeError("Unknown error:" + str(event))
|
||||
|
||||
logging.info(f'[raw_input] {inputs}')
|
||||
logging.info(f'[response] {self.result_buf}')
|
||||
return self.result_buf
|
||||
|
||||
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
|
||||
conversation_cnt = len(history) // 2
|
||||
messages = [{"role": "user", "content": system_prompt}, {"role": "assistant", "content": "Certainly!"}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "":
|
||||
continue
|
||||
if what_gpt_answer["content"] == timeout_bot_msg:
|
||||
continue
|
||||
messages.append(what_i_have_asked)
|
||||
messages.append(what_gpt_answer)
|
||||
else:
|
||||
messages[-1]['content'] = what_gpt_answer['content']
|
||||
what_i_ask_now = {}
|
||||
what_i_ask_now["role"] = "user"
|
||||
what_i_ask_now["content"] = inputs
|
||||
messages.append(what_i_ask_now)
|
||||
return messages
|
29
request_llms/key_manager.py
Normal file
29
request_llms/key_manager.py
Normal file
@ -0,0 +1,29 @@
|
||||
import random
|
||||
|
||||
def Singleton(cls):
|
||||
_instance = {}
|
||||
|
||||
def _singleton(*args, **kargs):
|
||||
if cls not in _instance:
|
||||
_instance[cls] = cls(*args, **kargs)
|
||||
return _instance[cls]
|
||||
|
||||
return _singleton
|
||||
|
||||
|
||||
@Singleton
|
||||
class OpenAI_ApiKeyManager():
|
||||
def __init__(self, mode='blacklist') -> None:
|
||||
# self.key_avail_list = []
|
||||
self.key_black_list = []
|
||||
|
||||
def add_key_to_blacklist(self, key):
|
||||
self.key_black_list.append(key)
|
||||
|
||||
def select_avail_key(self, key_list):
|
||||
# select key from key_list, but avoid keys also in self.key_black_list, raise error if no key can be found
|
||||
available_keys = [key for key in key_list if key not in self.key_black_list]
|
||||
if not available_keys:
|
||||
raise KeyError("No available key found.")
|
||||
selected_key = random.choice(available_keys)
|
||||
return selected_key
|
321
request_llms/local_llm_class.py
Normal file
321
request_llms/local_llm_class.py
Normal file
@ -0,0 +1,321 @@
|
||||
import time
|
||||
import threading
|
||||
from toolbox import update_ui
|
||||
from multiprocessing import Process, Pipe
|
||||
from contextlib import redirect_stdout
|
||||
from request_llms.queued_pipe import create_queue_pipe
|
||||
|
||||
class DebugLock(object):
|
||||
def __init__(self):
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def acquire(self):
|
||||
print("acquiring", self)
|
||||
#traceback.print_tb
|
||||
self._lock.acquire()
|
||||
print("acquired", self)
|
||||
|
||||
def release(self):
|
||||
print("released", self)
|
||||
#traceback.print_tb
|
||||
self._lock.release()
|
||||
|
||||
def __enter__(self):
|
||||
self.acquire()
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
self.release()
|
||||
|
||||
def SingletonLocalLLM(cls):
|
||||
"""
|
||||
Singleton Decroator for LocalLLMHandle
|
||||
"""
|
||||
_instance = {}
|
||||
|
||||
def _singleton(*args, **kargs):
|
||||
if cls not in _instance:
|
||||
_instance[cls] = cls(*args, **kargs)
|
||||
return _instance[cls]
|
||||
elif _instance[cls].corrupted:
|
||||
_instance[cls] = cls(*args, **kargs)
|
||||
return _instance[cls]
|
||||
else:
|
||||
return _instance[cls]
|
||||
return _singleton
|
||||
|
||||
|
||||
def reset_tqdm_output():
|
||||
import sys, tqdm
|
||||
def status_printer(self, file):
|
||||
fp = file
|
||||
if fp in (sys.stderr, sys.stdout):
|
||||
getattr(sys.stderr, 'flush', lambda: None)()
|
||||
getattr(sys.stdout, 'flush', lambda: None)()
|
||||
|
||||
def fp_write(s):
|
||||
print(s)
|
||||
last_len = [0]
|
||||
|
||||
def print_status(s):
|
||||
from tqdm.utils import disp_len
|
||||
len_s = disp_len(s)
|
||||
fp_write('\r' + s + (' ' * max(last_len[0] - len_s, 0)))
|
||||
last_len[0] = len_s
|
||||
return print_status
|
||||
tqdm.tqdm.status_printer = status_printer
|
||||
|
||||
|
||||
class LocalLLMHandle(Process):
|
||||
def __init__(self):
|
||||
# ⭐run in main process
|
||||
super().__init__(daemon=True)
|
||||
self.is_main_process = True # init
|
||||
self.corrupted = False
|
||||
self.load_model_info()
|
||||
self.parent, self.child = create_queue_pipe()
|
||||
self.parent_state, self.child_state = create_queue_pipe()
|
||||
# allow redirect_stdout
|
||||
self.std_tag = "[Subprocess Message] "
|
||||
self.child.write = lambda x: self.child.send(self.std_tag + x)
|
||||
self.running = True
|
||||
self._model = None
|
||||
self._tokenizer = None
|
||||
self.state = ""
|
||||
self.check_dependency()
|
||||
self.is_main_process = False # state wrap for child process
|
||||
self.start()
|
||||
self.is_main_process = True # state wrap for child process
|
||||
self.threadLock = DebugLock()
|
||||
|
||||
def get_state(self):
|
||||
# ⭐run in main process
|
||||
while self.parent_state.poll():
|
||||
self.state = self.parent_state.recv()
|
||||
return self.state
|
||||
|
||||
def set_state(self, new_state):
|
||||
# ⭐run in main process or 🏃♂️🏃♂️🏃♂️ run in child process
|
||||
if self.is_main_process:
|
||||
self.state = new_state
|
||||
else:
|
||||
self.child_state.send(new_state)
|
||||
|
||||
def load_model_info(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ run in child process
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
self.model_name = ""
|
||||
self.cmd_to_install = ""
|
||||
|
||||
def load_model_and_tokenizer(self):
|
||||
"""
|
||||
This function should return the model and the tokenizer
|
||||
"""
|
||||
# 🏃♂️🏃♂️🏃♂️ run in child process
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
|
||||
def llm_stream_generator(self, **kwargs):
|
||||
# 🏃♂️🏃♂️🏃♂️ run in child process
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
|
||||
def try_to_import_special_deps(self, **kwargs):
|
||||
"""
|
||||
import something that will raise error if the user does not install requirement_*.txt
|
||||
"""
|
||||
# ⭐run in main process
|
||||
raise NotImplementedError("Method not implemented yet")
|
||||
|
||||
def check_dependency(self):
|
||||
# ⭐run in main process
|
||||
try:
|
||||
self.try_to_import_special_deps()
|
||||
self.set_state("`依赖检测通过`")
|
||||
self.running = True
|
||||
except:
|
||||
self.set_state(f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。")
|
||||
self.running = False
|
||||
|
||||
def run(self):
|
||||
# 🏃♂️🏃♂️🏃♂️ run in child process
|
||||
# 第一次运行,加载参数
|
||||
reset_tqdm_output()
|
||||
self.set_state("`尝试加载模型`")
|
||||
try:
|
||||
with redirect_stdout(self.child):
|
||||
self._model, self._tokenizer = self.load_model_and_tokenizer()
|
||||
except:
|
||||
self.set_state("`加载模型失败`")
|
||||
self.running = False
|
||||
from toolbox import trimmed_format_exc
|
||||
self.child.send(
|
||||
f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||
self.child.send('[FinishBad]')
|
||||
raise RuntimeError(f"不能正常加载{self.model_name}的参数!")
|
||||
|
||||
self.set_state("`准备就绪`")
|
||||
while True:
|
||||
# 进入任务等待状态
|
||||
kwargs = self.child.recv()
|
||||
# 收到消息,开始请求
|
||||
try:
|
||||
for response_full in self.llm_stream_generator(**kwargs):
|
||||
self.child.send(response_full)
|
||||
print('debug' + response_full)
|
||||
self.child.send('[Finish]')
|
||||
# 请求处理结束,开始下一个循环
|
||||
except:
|
||||
from toolbox import trimmed_format_exc
|
||||
self.child.send(
|
||||
f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||||
self.child.send('[Finish]')
|
||||
|
||||
def clear_pending_messages(self):
|
||||
# ⭐run in main process
|
||||
while True:
|
||||
if self.parent.poll():
|
||||
self.parent.recv()
|
||||
continue
|
||||
for _ in range(5):
|
||||
time.sleep(0.5)
|
||||
if self.parent.poll():
|
||||
r = self.parent.recv()
|
||||
continue
|
||||
break
|
||||
return
|
||||
|
||||
def stream_chat(self, **kwargs):
|
||||
# ⭐run in main process
|
||||
if self.get_state() == "`准备就绪`":
|
||||
yield "`正在等待线程锁,排队中请稍后 ...`"
|
||||
|
||||
with self.threadLock:
|
||||
if self.parent.poll():
|
||||
yield "`排队中请稍后 ...`"
|
||||
self.clear_pending_messages()
|
||||
self.parent.send(kwargs)
|
||||
std_out = ""
|
||||
std_out_clip_len = 4096
|
||||
while True:
|
||||
res = self.parent.recv()
|
||||
# pipe_watch_dog.feed()
|
||||
if res.startswith(self.std_tag):
|
||||
new_output = res[len(self.std_tag):]
|
||||
std_out = std_out[:std_out_clip_len]
|
||||
print(new_output, end='')
|
||||
std_out = new_output + std_out
|
||||
yield self.std_tag + '\n```\n' + std_out + '\n```\n'
|
||||
elif res == '[Finish]':
|
||||
break
|
||||
elif res == '[FinishBad]':
|
||||
self.running = False
|
||||
self.corrupted = True
|
||||
break
|
||||
else:
|
||||
std_out = ""
|
||||
yield res
|
||||
|
||||
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
||||
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||
|
||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||||
"""
|
||||
refer to request_llms/bridge_all.py
|
||||
"""
|
||||
_llm_handle = LLMSingletonClass()
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = load_message + "\n\n" + _llm_handle.get_state()
|
||||
if not _llm_handle.running:
|
||||
raise RuntimeError(_llm_handle.get_state())
|
||||
|
||||
if history_format == 'classic':
|
||||
# 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
history_feedin.append([sys_prompt, "Certainly!"])
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]])
|
||||
elif history_format == 'chatglm3':
|
||||
# 有 sys_prompt 接口
|
||||
conversation_cnt = len(history) // 2
|
||||
history_feedin = [{"role": "system", "content": sys_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "":
|
||||
continue
|
||||
history_feedin.append(what_i_have_asked)
|
||||
history_feedin.append(what_gpt_answer)
|
||||
else:
|
||||
history_feedin[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||||
response = ""
|
||||
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
if len(observe_window) >= 1:
|
||||
observe_window[0] = response
|
||||
if len(observe_window) >= 2:
|
||||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||
raise RuntimeError("程序终止。")
|
||||
return response
|
||||
|
||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
||||
"""
|
||||
refer to request_llms/bridge_all.py
|
||||
"""
|
||||
chatbot.append((inputs, ""))
|
||||
|
||||
_llm_handle = LLMSingletonClass()
|
||||
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.get_state())
|
||||
yield from update_ui(chatbot=chatbot, history=[])
|
||||
if not _llm_handle.running:
|
||||
raise RuntimeError(_llm_handle.get_state())
|
||||
|
||||
if additional_fn is not None:
|
||||
from core_functional import handle_core_functionality
|
||||
inputs, history = handle_core_functionality(
|
||||
additional_fn, inputs, history, chatbot)
|
||||
|
||||
# 处理历史信息
|
||||
if history_format == 'classic':
|
||||
# 没有 sys_prompt 接口,因此把prompt加入 history
|
||||
history_feedin = []
|
||||
history_feedin.append([system_prompt, "Certainly!"])
|
||||
for i in range(len(history)//2):
|
||||
history_feedin.append([history[2*i], history[2*i+1]])
|
||||
elif history_format == 'chatglm3':
|
||||
# 有 sys_prompt 接口
|
||||
conversation_cnt = len(history) // 2
|
||||
history_feedin = [{"role": "system", "content": system_prompt}]
|
||||
if conversation_cnt:
|
||||
for index in range(0, 2*conversation_cnt, 2):
|
||||
what_i_have_asked = {}
|
||||
what_i_have_asked["role"] = "user"
|
||||
what_i_have_asked["content"] = history[index]
|
||||
what_gpt_answer = {}
|
||||
what_gpt_answer["role"] = "assistant"
|
||||
what_gpt_answer["content"] = history[index+1]
|
||||
if what_i_have_asked["content"] != "":
|
||||
if what_gpt_answer["content"] == "":
|
||||
continue
|
||||
history_feedin.append(what_i_have_asked)
|
||||
history_feedin.append(what_gpt_answer)
|
||||
else:
|
||||
history_feedin[-1]['content'] = what_gpt_answer['content']
|
||||
|
||||
# 开始接收回复
|
||||
response = f"[Local Message] 等待{model_name}响应中 ..."
|
||||
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||||
chatbot[-1] = (inputs, response)
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
# 总结输出
|
||||
if response == f"[Local Message] 等待{model_name}响应中 ...":
|
||||
response = f"[Local Message] {model_name}响应异常 ..."
|
||||
history.extend([inputs, response])
|
||||
yield from update_ui(chatbot=chatbot, history=history)
|
||||
|
||||
return predict_no_ui_long_connection, predict
|
24
request_llms/queued_pipe.py
Normal file
24
request_llms/queued_pipe.py
Normal file
@ -0,0 +1,24 @@
|
||||
from multiprocessing import Pipe, Queue
|
||||
import time
|
||||
import threading
|
||||
|
||||
class PipeSide(object):
|
||||
def __init__(self, q_2remote, q_2local) -> None:
|
||||
self.q_2remote = q_2remote
|
||||
self.q_2local = q_2local
|
||||
|
||||
def recv(self):
|
||||
return self.q_2local.get()
|
||||
|
||||
def send(self, buf):
|
||||
self.q_2remote.put(buf)
|
||||
|
||||
def poll(self):
|
||||
return not self.q_2local.empty()
|
||||
|
||||
def create_queue_pipe():
|
||||
q_p2c = Queue()
|
||||
q_c2p = Queue()
|
||||
pipe_c = PipeSide(q_2local=q_p2c, q_2remote=q_c2p)
|
||||
pipe_p = PipeSide(q_2local=q_c2p, q_2remote=q_p2c)
|
||||
return pipe_c, pipe_p
|
@ -10,14 +10,16 @@ def validate_path():
|
||||
|
||||
validate_path() # validate path so you can run from base directory
|
||||
if __name__ == "__main__":
|
||||
# from request_llm.bridge_newbingfree import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_moss import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_jittorllms_llama import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_claude import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_internlm import predict_no_ui_long_connection
|
||||
# from request_llm.bridge_qwen import predict_no_ui_long_connection
|
||||
from request_llm.bridge_spark import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_newbingfree import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_moss import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_jittorllms_llama import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_claude import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_qwen import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
||||
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
||||
from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
||||
|
||||
llm_kwargs = {
|
||||
'max_length': 4096,
|
||||
|
44
tests/test_markdown.py
Normal file
44
tests/test_markdown.py
Normal file
@ -0,0 +1,44 @@
|
||||
md = """
|
||||
作为您的写作和编程助手,我可以为您提供以下服务:
|
||||
|
||||
1. 写作:
|
||||
- 帮助您撰写文章、报告、散文、故事等。
|
||||
- 提供写作建议和技巧。
|
||||
- 协助您进行文案策划和内容创作。
|
||||
|
||||
2. 编程:
|
||||
- 帮助您解决编程问题,提供编程思路和建议。
|
||||
- 协助您编写代码,包括但不限于 Python、Java、C++ 等。
|
||||
- 为您解释复杂的技术概念,让您更容易理解。
|
||||
|
||||
3. 项目支持:
|
||||
- 协助您规划项目进度和任务分配。
|
||||
- 提供项目管理和协作建议。
|
||||
- 在项目实施过程中提供支持,确保项目顺利进行。
|
||||
|
||||
4. 学习辅导:
|
||||
- 帮助您巩固编程基础,提高编程能力。
|
||||
- 提供计算机科学、数据科学、人工智能等相关领域的学习资源和建议。
|
||||
- 解答您在学习过程中遇到的问题,让您更好地掌握知识。
|
||||
|
||||
5. 行业动态和趋势分析:
|
||||
- 为您提供业界最新的新闻和技术趋势。
|
||||
- 分析行业动态,帮助您了解市场发展和竞争态势。
|
||||
- 为您制定技术战略提供参考和建议。
|
||||
|
||||
请随时告诉我您的需求,我会尽力提供帮助。如果您有任何问题或需要解答的议题,请随时提问。
|
||||
"""
|
||||
|
||||
def validate_path():
|
||||
import os, sys
|
||||
dir_name = os.path.dirname(__file__)
|
||||
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
|
||||
os.chdir(root_dir_assume)
|
||||
sys.path.append(root_dir_assume)
|
||||
validate_path() # validate path so you can run from base directory
|
||||
from toolbox import markdown_convertion
|
||||
|
||||
html = markdown_convertion(md)
|
||||
print(html)
|
||||
with open('test.html', 'w', encoding='utf-8') as f:
|
||||
f.write(html)
|
@ -18,7 +18,7 @@ def adjust_theme():
|
||||
set_theme = gr.themes.ThemeClass()
|
||||
with ProxyNetworkActivate('Download_Gradio_Theme'):
|
||||
logging.info('正在下载Gradio主题,请稍等。')
|
||||
THEME, = get_conf('THEME')
|
||||
THEME = get_conf('THEME')
|
||||
if THEME.startswith('Huggingface-'): THEME = THEME.lstrip('Huggingface-')
|
||||
if THEME.startswith('huggingface-'): THEME = THEME.lstrip('huggingface-')
|
||||
set_theme = set_theme.from_hub(THEME.lower())
|
||||
|
@ -1,6 +1,6 @@
|
||||
import gradio as gr
|
||||
from toolbox import get_conf
|
||||
THEME, = get_conf('THEME')
|
||||
THEME = get_conf('THEME')
|
||||
|
||||
def load_dynamic_theme(THEME):
|
||||
adjust_dynamic_theme = None
|
||||
|
48
toolbox.py
48
toolbox.py
@ -7,6 +7,7 @@ import os
|
||||
import gradio
|
||||
import shutil
|
||||
import glob
|
||||
import math
|
||||
from latex2mathml.converter import convert as tex2mathml
|
||||
from functools import wraps, lru_cache
|
||||
pj = os.path.join
|
||||
@ -151,7 +152,7 @@ def CatchException(f):
|
||||
except Exception as e:
|
||||
from check_proxy import check_proxy
|
||||
from toolbox import get_conf
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||
if len(chatbot_with_cookie) == 0:
|
||||
chatbot_with_cookie.clear()
|
||||
@ -372,6 +373,26 @@ def markdown_convertion(txt):
|
||||
contain_any_eq = True
|
||||
return contain_any_eq
|
||||
|
||||
def fix_markdown_indent(txt):
|
||||
# fix markdown indent
|
||||
if (' - ' not in txt) or ('. ' not in txt):
|
||||
return txt # do not need to fix, fast escape
|
||||
# walk through the lines and fix non-standard indentation
|
||||
lines = txt.split("\n")
|
||||
pattern = re.compile(r'^\s+-')
|
||||
activated = False
|
||||
for i, line in enumerate(lines):
|
||||
if line.startswith('- ') or line.startswith('1. '):
|
||||
activated = True
|
||||
if activated and pattern.match(line):
|
||||
stripped_string = line.lstrip()
|
||||
num_spaces = len(line) - len(stripped_string)
|
||||
if (num_spaces % 4) == 3:
|
||||
num_spaces_should_be = math.ceil(num_spaces/4) * 4
|
||||
lines[i] = ' ' * num_spaces_should_be + stripped_string
|
||||
return '\n'.join(lines)
|
||||
|
||||
txt = fix_markdown_indent(txt)
|
||||
if is_equation(txt): # 有$标识的公式符号,且没有代码段```的标识
|
||||
# convert everything to html format
|
||||
split = markdown.markdown(text='---')
|
||||
@ -534,14 +555,14 @@ def disable_auto_promotion(chatbot):
|
||||
return
|
||||
|
||||
def is_the_upload_folder(string):
|
||||
PATH_PRIVATE_UPLOAD, = get_conf('PATH_PRIVATE_UPLOAD')
|
||||
PATH_PRIVATE_UPLOAD = get_conf('PATH_PRIVATE_UPLOAD')
|
||||
pattern = r'^PATH_PRIVATE_UPLOAD/[A-Za-z0-9_-]+/\d{4}-\d{2}-\d{2}-\d{2}-\d{2}-\d{2}$'
|
||||
pattern = pattern.replace('PATH_PRIVATE_UPLOAD', PATH_PRIVATE_UPLOAD)
|
||||
if re.match(pattern, string): return True
|
||||
else: return False
|
||||
|
||||
def del_outdated_uploads(outdate_time_seconds):
|
||||
PATH_PRIVATE_UPLOAD, = get_conf('PATH_PRIVATE_UPLOAD')
|
||||
PATH_PRIVATE_UPLOAD = get_conf('PATH_PRIVATE_UPLOAD')
|
||||
current_time = time.time()
|
||||
one_hour_ago = current_time - outdate_time_seconds
|
||||
# Get a list of all subdirectories in the PATH_PRIVATE_UPLOAD folder
|
||||
@ -567,7 +588,7 @@ def on_file_uploaded(request: gradio.Request, files, chatbot, txt, txt2, checkbo
|
||||
# 创建工作路径
|
||||
user_name = "default" if not request.username else request.username
|
||||
time_tag = gen_time_str()
|
||||
PATH_PRIVATE_UPLOAD, = get_conf('PATH_PRIVATE_UPLOAD')
|
||||
PATH_PRIVATE_UPLOAD = get_conf('PATH_PRIVATE_UPLOAD')
|
||||
target_path_base = pj(PATH_PRIVATE_UPLOAD, user_name, time_tag)
|
||||
os.makedirs(target_path_base, exist_ok=True)
|
||||
|
||||
@ -605,7 +626,7 @@ def on_file_uploaded(request: gradio.Request, files, chatbot, txt, txt2, checkbo
|
||||
|
||||
def on_report_generated(cookies, files, chatbot):
|
||||
from toolbox import find_recent_files
|
||||
PATH_LOGGING, = get_conf('PATH_LOGGING')
|
||||
PATH_LOGGING = get_conf('PATH_LOGGING')
|
||||
if 'files_to_promote' in cookies:
|
||||
report_files = cookies['files_to_promote']
|
||||
cookies.pop('files_to_promote')
|
||||
@ -648,7 +669,7 @@ def load_chat_cookies():
|
||||
return {'api_key': API_KEY, 'llm_model': LLM_MODEL, 'customize_fn_overwrite': customize_fn_overwrite_}
|
||||
|
||||
def is_openai_api_key(key):
|
||||
CUSTOM_API_KEY_PATTERN, = get_conf('CUSTOM_API_KEY_PATTERN')
|
||||
CUSTOM_API_KEY_PATTERN = get_conf('CUSTOM_API_KEY_PATTERN')
|
||||
if len(CUSTOM_API_KEY_PATTERN) != 0:
|
||||
API_MATCH_ORIGINAL = re.match(CUSTOM_API_KEY_PATTERN, key)
|
||||
else:
|
||||
@ -807,6 +828,7 @@ def get_conf(*args):
|
||||
for arg in args:
|
||||
r = read_single_conf_with_lru_cache(arg)
|
||||
res.append(r)
|
||||
if len(res) == 1: return res[0]
|
||||
return res
|
||||
|
||||
|
||||
@ -878,7 +900,7 @@ def clip_history(inputs, history, tokenizer, max_token_limit):
|
||||
直到历史记录的标记数量降低到阈值以下。
|
||||
"""
|
||||
import numpy as np
|
||||
from request_llm.bridge_all import model_info
|
||||
from request_llms.bridge_all import model_info
|
||||
def get_token_num(txt):
|
||||
return len(tokenizer.encode(txt, disallowed_special=()))
|
||||
input_token_num = get_token_num(inputs)
|
||||
@ -968,7 +990,7 @@ def gen_time_str():
|
||||
return time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
||||
|
||||
def get_log_folder(user='default', plugin_name='shared'):
|
||||
PATH_LOGGING, = get_conf('PATH_LOGGING')
|
||||
PATH_LOGGING = get_conf('PATH_LOGGING')
|
||||
_dir = pj(PATH_LOGGING, user, plugin_name)
|
||||
if not os.path.exists(_dir): os.makedirs(_dir)
|
||||
return _dir
|
||||
@ -985,13 +1007,13 @@ class ProxyNetworkActivate():
|
||||
else:
|
||||
# 给定了task, 我们检查一下
|
||||
from toolbox import get_conf
|
||||
WHEN_TO_USE_PROXY, = get_conf('WHEN_TO_USE_PROXY')
|
||||
WHEN_TO_USE_PROXY = get_conf('WHEN_TO_USE_PROXY')
|
||||
self.valid = (task in WHEN_TO_USE_PROXY)
|
||||
|
||||
def __enter__(self):
|
||||
if not self.valid: return self
|
||||
from toolbox import get_conf
|
||||
proxies, = get_conf('proxies')
|
||||
proxies = get_conf('proxies')
|
||||
if 'no_proxy' in os.environ: os.environ.pop('no_proxy')
|
||||
if proxies is not None:
|
||||
if 'http' in proxies: os.environ['HTTP_PROXY'] = proxies['http']
|
||||
@ -1033,7 +1055,7 @@ def Singleton(cls):
|
||||
"""
|
||||
========================================================================
|
||||
第四部分
|
||||
接驳虚空终端:
|
||||
接驳void-terminal:
|
||||
- set_conf: 在运行过程中动态地修改配置
|
||||
- set_multi_conf: 在运行过程中动态地修改多个配置
|
||||
- get_plugin_handle: 获取插件的句柄
|
||||
@ -1048,7 +1070,7 @@ def set_conf(key, value):
|
||||
read_single_conf_with_lru_cache.cache_clear()
|
||||
get_conf.cache_clear()
|
||||
os.environ[key] = str(value)
|
||||
altered, = get_conf(key)
|
||||
altered = get_conf(key)
|
||||
return altered
|
||||
|
||||
def set_multi_conf(dic):
|
||||
@ -1069,7 +1091,7 @@ def get_plugin_handle(plugin_name):
|
||||
def get_chat_handle():
|
||||
"""
|
||||
"""
|
||||
from request_llm.bridge_all import predict_no_ui_long_connection
|
||||
from request_llms.bridge_all import predict_no_ui_long_connection
|
||||
return predict_no_ui_long_connection
|
||||
|
||||
def get_plugin_default_kwargs():
|
||||
|
Loading…
x
Reference in New Issue
Block a user