ChatGLM改成多进程运行

This commit is contained in:
qingxu fu 2023-04-15 19:09:03 +08:00
parent 294ac338bd
commit 6aba339538
7 changed files with 270 additions and 212 deletions

View File

@ -66,7 +66,7 @@ def request_gpt_model_in_new_thread_with_ui_alive(
chatbot.append([inputs_show_user, ""]) chatbot.append([inputs_show_user, ""])
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面 yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
executor = ThreadPoolExecutor(max_workers=16) executor = ThreadPoolExecutor(max_workers=16)
mutable = ["", time.time()] mutable = ["", time.time(), ""]
def _req_gpt(inputs, history, sys_prompt): def _req_gpt(inputs, history, sys_prompt):
retry_op = retry_times_at_unknown_error retry_op = retry_times_at_unknown_error
exceeded_cnt = 0 exceeded_cnt = 0

View File

@ -20,7 +20,8 @@ def 同时问询(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive( gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=txt, inputs_show_user=txt, inputs=txt, inputs_show_user=txt,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=history, llm_kwargs=llm_kwargs, chatbot=chatbot, history=history,
sys_prompt=system_prompt sys_prompt=system_prompt,
retry_times_at_unknown_error=0
) )
history.append(txt) history.append(txt)

View File

@ -24,7 +24,7 @@ RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
# 下载分支 # 下载分支
WORKDIR /gpt WORKDIR /gpt
RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git -b v3.0 RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git -b v3.1
WORKDIR /gpt/chatgpt_academic WORKDIR /gpt/chatgpt_academic
RUN $useProxyNetwork python3 -m pip install -r requirements.txt RUN $useProxyNetwork python3 -m pip install -r requirements.txt
RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt

327
main.py
View File

@ -1,177 +1,182 @@
import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染 import os; os.environ['no_proxy'] = '*' # 避免代理网络产生意外污染
import gradio as gr
from request_llm.bridge_all import predict
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到 def main():
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \ import gradio as gr
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY') from request_llm.bridge_all import predict
from toolbox import format_io, find_free_port, on_file_uploaded, on_report_generated, get_conf, ArgsGeneralWrapper, DummyWith
# 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到
proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
# 如果WEB_PORT是-1, 则随机选取WEB端口 # 如果WEB_PORT是-1, 则随机选取WEB端口
PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT PORT = find_free_port() if WEB_PORT <= 0 else WEB_PORT
if not AUTHENTICATION: AUTHENTICATION = None if not AUTHENTICATION: AUTHENTICATION = None
from check_proxy import get_current_version from check_proxy import get_current_version
initial_prompt = "Serve me as a writing and programming assistant." initial_prompt = "Serve me as a writing and programming assistant."
title_html = f"<h1 align=\"center\">ChatGPT 学术优化 {get_current_version()}</h1>" title_html = f"<h1 align=\"center\">ChatGPT 学术优化 {get_current_version()}</h1>"
description = """代码开源和更新[地址🚀](https://github.com/binary-husky/chatgpt_academic),感谢热情的[开发者们❤️](https://github.com/binary-husky/chatgpt_academic/graphs/contributors)""" description = """代码开源和更新[地址🚀](https://github.com/binary-husky/chatgpt_academic),感谢热情的[开发者们❤️](https://github.com/binary-husky/chatgpt_academic/graphs/contributors)"""
# 问询记录, python 版本建议3.9+(越新越好) # 问询记录, python 版本建议3.9+(越新越好)
import logging import logging
os.makedirs("gpt_log", exist_ok=True) os.makedirs("gpt_log", exist_ok=True)
try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8") try:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO, encoding="utf-8")
except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO) except:logging.basicConfig(filename="gpt_log/chat_secrets.log", level=logging.INFO)
print("所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log, 请注意自我隐私保护哦!") print("所有问询记录将自动保存在本地目录./gpt_log/chat_secrets.log, 请注意自我隐私保护哦!")
# 一些普通功能模块 # 一些普通功能模块
from core_functional import get_core_functions from core_functional import get_core_functions
functional = get_core_functions() functional = get_core_functions()
# 高级函数插件 # 高级函数插件
from crazy_functional import get_crazy_functions from crazy_functional import get_crazy_functions
crazy_fns = get_crazy_functions() crazy_fns = get_crazy_functions()
# 处理markdown文本格式的转变 # 处理markdown文本格式的转变
gr.Chatbot.postprocess = format_io gr.Chatbot.postprocess = format_io
# 做一些外观色彩上的调整 # 做一些外观色彩上的调整
from theme import adjust_theme, advanced_css from theme import adjust_theme, advanced_css
set_theme = adjust_theme() set_theme = adjust_theme()
# 代理与自动更新 # 代理与自动更新
from check_proxy import check_proxy, auto_update from check_proxy import check_proxy, auto_update
proxy_info = check_proxy(proxies) proxy_info = check_proxy(proxies)
gr_L1 = lambda: gr.Row().style() gr_L1 = lambda: gr.Row().style()
gr_L2 = lambda scale: gr.Column(scale=scale) gr_L2 = lambda scale: gr.Column(scale=scale)
if LAYOUT == "TOP-DOWN": if LAYOUT == "TOP-DOWN":
gr_L1 = lambda: DummyWith() gr_L1 = lambda: DummyWith()
gr_L2 = lambda scale: gr.Row() gr_L2 = lambda scale: gr.Row()
CHATBOT_HEIGHT /= 2 CHATBOT_HEIGHT /= 2
cancel_handles = [] cancel_handles = []
with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo: with gr.Blocks(title="ChatGPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
gr.HTML(title_html) gr.HTML(title_html)
cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL}) cookies = gr.State({'api_key': API_KEY, 'llm_model': LLM_MODEL})
with gr_L1(): with gr_L1():
with gr_L2(scale=2): with gr_L2(scale=2):
chatbot = gr.Chatbot() chatbot = gr.Chatbot()
chatbot.style(height=CHATBOT_HEIGHT) chatbot.style(height=CHATBOT_HEIGHT)
history = gr.State([]) history = gr.State([])
with gr_L2(scale=1): with gr_L2(scale=1):
with gr.Accordion("输入区", open=True) as area_input_primary: with gr.Accordion("输入区", open=True) as area_input_primary:
with gr.Row(): with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False) txt = gr.Textbox(show_label=False, placeholder="Input question here.").style(container=False)
with gr.Row(): with gr.Row():
submitBtn = gr.Button("提交", variant="primary") submitBtn = gr.Button("提交", variant="primary")
with gr.Row(): with gr.Row():
resetBtn = gr.Button("重置", variant="secondary"); resetBtn.style(size="sm") resetBtn = gr.Button("重置", variant="secondary"); resetBtn.style(size="sm")
stopBtn = gr.Button("停止", variant="secondary"); stopBtn.style(size="sm") stopBtn = gr.Button("停止", variant="secondary"); stopBtn.style(size="sm")
with gr.Row(): with gr.Row():
status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}") status = gr.Markdown(f"Tip: 按Enter提交, 按Shift+Enter换行。当前模型: {LLM_MODEL} \n {proxy_info}")
with gr.Accordion("基础功能区", open=True) as area_basic_fn: with gr.Accordion("基础功能区", open=True) as area_basic_fn:
with gr.Row(): with gr.Row():
for k in functional: for k in functional:
variant = functional[k]["Color"] if "Color" in functional[k] else "secondary" variant = functional[k]["Color"] if "Color" in functional[k] else "secondary"
functional[k]["Button"] = gr.Button(k, variant=variant) functional[k]["Button"] = gr.Button(k, variant=variant)
with gr.Accordion("函数插件区", open=True) as area_crazy_fn: with gr.Accordion("函数插件区", open=True) as area_crazy_fn:
with gr.Row(): with gr.Row():
gr.Markdown("注意:以下“红颜色”标识的函数插件需从输入区读取路径作为参数.") gr.Markdown("注意:以下“红颜色”标识的函数插件需从输入区读取路径作为参数.")
with gr.Row(): with gr.Row():
for k in crazy_fns: for k in crazy_fns:
if not crazy_fns[k].get("AsButton", True): continue if not crazy_fns[k].get("AsButton", True): continue
variant = crazy_fns[k]["Color"] if "Color" in crazy_fns[k] else "secondary" variant = crazy_fns[k]["Color"] if "Color" in crazy_fns[k] else "secondary"
crazy_fns[k]["Button"] = gr.Button(k, variant=variant) crazy_fns[k]["Button"] = gr.Button(k, variant=variant)
crazy_fns[k]["Button"].style(size="sm") crazy_fns[k]["Button"].style(size="sm")
with gr.Row(): with gr.Row():
with gr.Accordion("更多函数插件", open=True): with gr.Accordion("更多函数插件", open=True):
dropdown_fn_list = [k for k in crazy_fns.keys() if not crazy_fns[k].get("AsButton", True)] dropdown_fn_list = [k for k in crazy_fns.keys() if not crazy_fns[k].get("AsButton", True)]
with gr.Column(scale=1): with gr.Column(scale=1):
dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="").style(container=False) dropdown = gr.Dropdown(dropdown_fn_list, value=r"打开插件列表", label="").style(container=False)
with gr.Column(scale=1): with gr.Column(scale=1):
switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary") switchy_bt = gr.Button(r"请先从插件列表中选择", variant="secondary")
with gr.Row(): with gr.Row():
with gr.Accordion("点击展开“文件上传区”。上传本地文件可供红色函数插件调用。", open=False) as area_file_up: with gr.Accordion("点击展开“文件上传区”。上传本地文件可供红色函数插件调用。", open=False) as area_file_up:
file_upload = gr.Files(label="任何文件, 但推荐上传压缩文件(zip, tar)", file_count="multiple") file_upload = gr.Files(label="任何文件, 但推荐上传压缩文件(zip, tar)", file_count="multiple")
with gr.Accordion("展开SysPrompt & 交互界面布局 & Github地址", open=(LAYOUT == "TOP-DOWN")): with gr.Accordion("展开SysPrompt & 交互界面布局 & Github地址", open=(LAYOUT == "TOP-DOWN")):
system_prompt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt) system_prompt = gr.Textbox(show_label=True, placeholder=f"System Prompt", label="System prompt", value=initial_prompt)
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",) top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.01,interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",) temperature = gr.Slider(minimum=-0, maximum=2.0, value=1.0, step=0.01, interactive=True, label="Temperature",)
max_length_sl = gr.Slider(minimum=256, maximum=4096, value=512, step=1, interactive=True, label="MaxLength",) max_length_sl = gr.Slider(minimum=256, maximum=4096, value=512, step=1, interactive=True, label="MaxLength",)
checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区") checkboxes = gr.CheckboxGroup(["基础功能区", "函数插件区", "底部输入区"], value=["基础功能区", "函数插件区"], label="显示/隐藏功能区")
md_dropdown = gr.Dropdown(["gpt-3.5-turbo", "chatglm"], value=LLM_MODEL, label="").style(container=False) md_dropdown = gr.Dropdown(["gpt-3.5-turbo", "chatglm"], value=LLM_MODEL, label="").style(container=False)
gr.Markdown(description) gr.Markdown(description)
with gr.Accordion("备选输入区", open=True, visible=False) as area_input_secondary: with gr.Accordion("备选输入区", open=True, visible=False) as area_input_secondary:
with gr.Row(): with gr.Row():
txt2 = gr.Textbox(show_label=False, placeholder="Input question here.", label="输入区2").style(container=False) txt2 = gr.Textbox(show_label=False, placeholder="Input question here.", label="输入区2").style(container=False)
with gr.Row(): with gr.Row():
submitBtn2 = gr.Button("提交", variant="primary") submitBtn2 = gr.Button("提交", variant="primary")
with gr.Row(): with gr.Row():
resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn.style(size="sm") resetBtn2 = gr.Button("重置", variant="secondary"); resetBtn.style(size="sm")
stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn.style(size="sm") stopBtn2 = gr.Button("停止", variant="secondary"); stopBtn.style(size="sm")
# 功能区显示开关与功能区的互动 # 功能区显示开关与功能区的互动
def fn_area_visibility(a): def fn_area_visibility(a):
ret = {} ret = {}
ret.update({area_basic_fn: gr.update(visible=("基础功能区" in a))}) ret.update({area_basic_fn: gr.update(visible=("基础功能区" in a))})
ret.update({area_crazy_fn: gr.update(visible=("函数插件区" in a))}) ret.update({area_crazy_fn: gr.update(visible=("函数插件区" in a))})
ret.update({area_input_primary: gr.update(visible=("底部输入区" not in a))}) ret.update({area_input_primary: gr.update(visible=("底部输入区" not in a))})
ret.update({area_input_secondary: gr.update(visible=("底部输入区" in a))}) ret.update({area_input_secondary: gr.update(visible=("底部输入区" in a))})
if "底部输入区" in a: ret.update({txt: gr.update(value="")}) if "底部输入区" in a: ret.update({txt: gr.update(value="")})
return ret return ret
checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2] ) checkboxes.select(fn_area_visibility, [checkboxes], [area_basic_fn, area_crazy_fn, area_input_primary, area_input_secondary, txt, txt2] )
# 整理反复出现的控件句柄组合 # 整理反复出现的控件句柄组合
input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt] input_combo = [cookies, max_length_sl, md_dropdown, txt, txt2, top_p, temperature, chatbot, history, system_prompt]
output_combo = [cookies, chatbot, history, status] output_combo = [cookies, chatbot, history, status]
predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=input_combo, outputs=output_combo) predict_args = dict(fn=ArgsGeneralWrapper(predict), inputs=input_combo, outputs=output_combo)
# 提交按钮、重置按钮 # 提交按钮、重置按钮
cancel_handles.append(txt.submit(**predict_args)) cancel_handles.append(txt.submit(**predict_args))
cancel_handles.append(txt2.submit(**predict_args)) cancel_handles.append(txt2.submit(**predict_args))
cancel_handles.append(submitBtn.click(**predict_args)) cancel_handles.append(submitBtn.click(**predict_args))
cancel_handles.append(submitBtn2.click(**predict_args)) cancel_handles.append(submitBtn2.click(**predict_args))
resetBtn.click(lambda: ([], [], "已重置"), None, [chatbot, history, status]) resetBtn.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status]) resetBtn2.click(lambda: ([], [], "已重置"), None, [chatbot, history, status])
# 基础功能区的回调函数注册 # 基础功能区的回调函数注册
for k in functional: for k in functional:
click_handle = functional[k]["Button"].click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(k)], outputs=output_combo) click_handle = functional[k]["Button"].click(fn=ArgsGeneralWrapper(predict), inputs=[*input_combo, gr.State(True), gr.State(k)], outputs=output_combo)
cancel_handles.append(click_handle) cancel_handles.append(click_handle)
# 文件上传区接收文件后与chatbot的互动 # 文件上传区接收文件后与chatbot的互动
file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt], [chatbot, txt]) file_upload.upload(on_file_uploaded, [file_upload, chatbot, txt], [chatbot, txt])
# 函数插件-固定按钮区 # 函数插件-固定按钮区
for k in crazy_fns: for k in crazy_fns:
if not crazy_fns[k].get("AsButton", True): continue if not crazy_fns[k].get("AsButton", True): continue
click_handle = crazy_fns[k]["Button"].click(ArgsGeneralWrapper(crazy_fns[k]["Function"]), [*input_combo, gr.State(PORT)], output_combo) click_handle = crazy_fns[k]["Button"].click(ArgsGeneralWrapper(crazy_fns[k]["Function"]), [*input_combo, gr.State(PORT)], output_combo)
click_handle.then(on_report_generated, [file_upload, chatbot], [file_upload, chatbot])
cancel_handles.append(click_handle)
# 函数插件-下拉菜单与随变按钮的互动
def on_dropdown_changed(k):
variant = crazy_fns[k]["Color"] if "Color" in crazy_fns[k] else "secondary"
return {switchy_bt: gr.update(value=k, variant=variant)}
dropdown.select(on_dropdown_changed, [dropdown], [switchy_bt] )
# 随变按钮的回调函数注册
def route(k, *args, **kwargs):
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(*args, **kwargs)
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo, gr.State(PORT)], output_combo)
click_handle.then(on_report_generated, [file_upload, chatbot], [file_upload, chatbot]) click_handle.then(on_report_generated, [file_upload, chatbot], [file_upload, chatbot])
# def expand_file_area(file_upload, area_file_up):
# if len(file_upload)>0: return {area_file_up: gr.update(open=True)}
# click_handle.then(expand_file_area, [file_upload, area_file_up], [area_file_up])
cancel_handles.append(click_handle) cancel_handles.append(click_handle)
# 函数插件-下拉菜单与随变按钮的互动 # 终止按钮的回调函数注册
def on_dropdown_changed(k): stopBtn.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
variant = crazy_fns[k]["Color"] if "Color" in crazy_fns[k] else "secondary" stopBtn2.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
return {switchy_bt: gr.update(value=k, variant=variant)}
dropdown.select(on_dropdown_changed, [dropdown], [switchy_bt] )
# 随变按钮的回调函数注册
def route(k, *args, **kwargs):
if k in [r"打开插件列表", r"请先从插件列表中选择"]: return
yield from ArgsGeneralWrapper(crazy_fns[k]["Function"])(*args, **kwargs)
click_handle = switchy_bt.click(route,[switchy_bt, *input_combo, gr.State(PORT)], output_combo)
click_handle.then(on_report_generated, [file_upload, chatbot], [file_upload, chatbot])
# def expand_file_area(file_upload, area_file_up):
# if len(file_upload)>0: return {area_file_up: gr.update(open=True)}
# click_handle.then(expand_file_area, [file_upload, area_file_up], [area_file_up])
cancel_handles.append(click_handle)
# 终止按钮的回调函数注册
stopBtn.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
stopBtn2.click(fn=None, inputs=None, outputs=None, cancels=cancel_handles)
# gradio的inbrowser触发不太稳定回滚代码到原始的浏览器打开函数
def auto_opentab_delay():
import threading, webbrowser, time
print(f"如果浏览器没有自动打开请复制并转到以下URL")
print(f"\t(亮色主题): http://localhost:{PORT}")
print(f"\t(暗色主题): http://localhost:{PORT}/?__dark-theme=true")
def open():
time.sleep(2) # 打开浏览器
webbrowser.open_new_tab(f"http://localhost:{PORT}/?__dark-theme=true")
threading.Thread(target=open, name="open-browser", daemon=True).start()
threading.Thread(target=auto_update, name="self-upgrade", daemon=True).start()
auto_opentab_delay() # gradio的inbrowser触发不太稳定回滚代码到原始的浏览器打开函数
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION) def auto_opentab_delay():
import threading, webbrowser, time
print(f"如果浏览器没有自动打开请复制并转到以下URL")
print(f"\t(亮色主题): http://localhost:{PORT}")
print(f"\t(暗色主题): http://localhost:{PORT}/?__dark-theme=true")
def open():
time.sleep(2) # 打开浏览器
webbrowser.open_new_tab(f"http://localhost:{PORT}/?__dark-theme=true")
threading.Thread(target=open, name="open-browser", daemon=True).start()
threading.Thread(target=auto_update, name="self-upgrade", daemon=True).start()
auto_opentab_delay()
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(server_name="0.0.0.0", server_port=PORT, auth=AUTHENTICATION)
if __name__ == "__main__":
main()

View File

@ -31,6 +31,24 @@ methods = {
"tgui-ui": tgui_ui, "tgui-ui": tgui_ui,
} }
def LLM_CATCH_EXCEPTION(f):
"""
装饰器函数将错误显示出来
"""
def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
try:
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
except Exception as e:
from toolbox import get_conf
import traceback
proxies, = get_conf('proxies')
tb_str = '\n```\n' + traceback.format_exc() + '\n```\n'
observe_window[0] = tb_str
return tb_str
return decorated
colors = ['#FF00FF', '#00FFFF', '#FF0000''#990099', '#009999', '#990044']
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False): def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False):
""" """
发送至LLM等待回复一次性完成不显示中间过程但内部用stream的方法避免中途网线被掐 发送至LLM等待回复一次性完成不显示中间过程但内部用stream的方法避免中途网线被掐
@ -62,17 +80,13 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience) return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
else: else:
# 如果同时询问多个大语言模型: # 如果同时询问多个大语言模型:
executor = ThreadPoolExecutor(max_workers=16) executor = ThreadPoolExecutor(max_workers=4)
models = model.split('&') models = model.split('&')
n_model = len(models) n_model = len(models)
window_len = len(observe_window) window_len = len(observe_window)
if window_len==0: assert window_len==3
window_mutex = [[] for _ in range(n_model)] + [True] window_mutex = [["", time.time(), ""] for _ in range(n_model)] + [True]
elif window_len==1:
window_mutex = [[""] for _ in range(n_model)] + [True]
elif window_len==2:
window_mutex = [["", time.time()] for _ in range(n_model)] + [True]
futures = [] futures = []
for i in range(n_model): for i in range(n_model):
@ -85,12 +99,12 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
method = methods['tgui-no-ui'] method = methods['tgui-no-ui']
llm_kwargs_feedin = copy.deepcopy(llm_kwargs) llm_kwargs_feedin = copy.deepcopy(llm_kwargs)
llm_kwargs_feedin['llm_model'] = model llm_kwargs_feedin['llm_model'] = model
future = executor.submit(method, inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience) future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience)
futures.append(future) futures.append(future)
def mutex_manager(window_mutex, observe_window): def mutex_manager(window_mutex, observe_window):
while True: while True:
time.sleep(0.2) time.sleep(0.5)
if not window_mutex[-1]: break if not window_mutex[-1]: break
# 看门狗watchdog # 看门狗watchdog
for i in range(n_model): for i in range(n_model):
@ -98,8 +112,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
# 观察窗window # 观察窗window
chat_string = [] chat_string = []
for i in range(n_model): for i in range(n_model):
chat_string.append( f"[{str(models[i])}]: {window_mutex[i][0]}" ) chat_string.append( f"{str(models[i])}】: <font color=\"{colors[i]}\"> {window_mutex[i][0]} </font>" )
res = '\n\n---\n\n'.join(chat_string) res = '<br/><br/>\n\n---\n\n'.join(chat_string)
# # # # # # # # # # # # # # # # # # # # # #
observe_window[0] = res observe_window[0] = res
@ -107,10 +121,18 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
t_model.start() t_model.start()
return_string_collect = [] return_string_collect = []
while True:
worker_done = [h.done() for h in futures]
if all(worker_done):
executor.shutdown()
break
time.sleep(1)
for i, future in enumerate(futures): # wait and get for i, future in enumerate(futures): # wait and get
return_string_collect.append( f"[{str(models[i])} 说]: {future.result()}" ) return_string_collect.append( f"{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" )
window_mutex[-1] = False # stop mutex thread window_mutex[-1] = False # stop mutex thread
res = '\n\n---\n\n'.join(return_string_collect) res = '<br/>\n\n---\n\n'.join(return_string_collect)
return res return res

View File

@ -3,35 +3,69 @@ from transformers import AutoModel, AutoTokenizer
import time import time
import importlib import importlib
from toolbox import update_ui, get_conf from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
#################################################################################
class GetGLMHandle(Process):
def __init__(self):
super().__init__(daemon=True)
self.parent, self.child = Pipe()
self.chatglm_model = None
self.chatglm_tokenizer = None
self.start()
print('初始化')
def ready(self):
return self.chatglm_model is not None
global chatglm_model, chatglm_tokenizer def run(self):
while True:
chatglm_model = None try:
chatglm_tokenizer = None if self.chatglm_model is None:
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
def model_loader(): device, = get_conf('LOCAL_MODEL_DEVICE')
global chatglm_model, chatglm_tokenizer if device=='cpu':
if chatglm_tokenizer is None: self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) else:
if chatglm_model is None: # 尚未加载 self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
device, = get_conf('LOCAL_MODEL_DEVICE') self.chatglm_model = self.chatglm_model.eval()
if device=='cpu': break
chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float() else:
else: break
chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() except:
chatglm_model = chatglm_model.eval() pass
chatglm_model = chatglm_model.eval() while True:
kwargs = self.child.recv()
try:
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs):
self.child.send(response)
except:
self.child.send('[Local Message] Call ChatGLM fail.')
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
self.parent.send(kwargs)
while True:
res = self.parent.recv()
if res != '[Finish]':
yield res
else:
break
return
global glm_handle
glm_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
""" """
多线程方法
函数的说明请见 request_llm/bridge_all.py 函数的说明请见 request_llm/bridge_all.py
""" """
global chatglm_model, chatglm_tokenizer global glm_handle
if chatglm_model is None: if glm_handle is None:
observe_window[0] = "ChatGLM尚未加载加载需要一段时间 ……" glm_handle = GetGLMHandle()
observe_window[0] = "ChatGLM尚未加载加载需要一段时间。注意取决于`config.py`的配置ChatGLM消耗大量的内存CPU或显存GPU也许会导致低配计算机卡死 ……"
model_loader()
# chatglm 没有 sys_prompt 接口因此把prompt加入 history # chatglm 没有 sys_prompt 接口因此把prompt加入 history
history_feedin = [] history_feedin = []
for i in range(len(history)//2): for i in range(len(history)//2):
@ -40,29 +74,27 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可 watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = "" response = ""
for response, history in chatglm_model.stream_chat(chatglm_tokenizer, inputs, history=history_feedin, max_length=llm_kwargs['max_length'], for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
# 观测窗,把已经获取的数据显示出去
observe_window[0] = response observe_window[0] = response
# 看门狗 (watchdog),如果超过期限没有喂狗,则终止
if len(observe_window) >= 2: if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。") raise RuntimeError("程序终止。")
# if not console_slience:
# print(response)
return response return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
""" """
单线程方法
函数的说明请见 request_llm/bridge_all.py 函数的说明请见 request_llm/bridge_all.py
""" """
global chatglm_model, chatglm_tokenizer
chatbot.append((inputs, "")) chatbot.append((inputs, ""))
if chatglm_model is None:
chatbot[-1] = (inputs, "ChatGLM尚未加载加载需要一段时间 ……") global glm_handle
if glm_handle is None:
glm_handle = GetGLMHandle()
chatbot[-1] = (inputs, "ChatGLM尚未加载加载需要一段时间。注意取决于`config.py`的配置ChatGLM消耗大量的内存CPU或显存GPU也许会导致低配计算机卡死 ……")
yield from update_ui(chatbot=chatbot, history=[]) yield from update_ui(chatbot=chatbot, history=[])
model_loader()
if additional_fn is not None: if additional_fn is not None:
import core_functional import core_functional
@ -71,13 +103,11 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话) if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
history_feedin = [] history_feedin = []
for i in range(len(history)//2): for i in range(len(history)//2):
history_feedin.append(["What can I do?", system_prompt] ) history_feedin.append(["What can I do?", system_prompt] )
history_feedin.append([history[2*i], history[2*i+1]] ) history_feedin.append([history[2*i], history[2*i+1]] )
for response, history in chatglm_model.stream_chat(chatglm_tokenizer, inputs, history=history_feedin, max_length=llm_kwargs['max_length'], for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response) chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history) yield from update_ui(chatbot=chatbot, history=history)

View File

@ -1,5 +1,5 @@
{ {
"version": 3.0, "version": 3.1,
"show_feature": true, "show_feature": true,
"new_feature": "支持ChatGLM <-> 支持多LLM模型同时对话" "new_feature": "支持ChatGLM <-> 支持多LLM模型同时对话"
} }