support claude api
This commit is contained in:
parent
add98f4eeb
commit
6f21ae8939
@ -71,7 +71,7 @@ MAX_RETRY = 2
|
|||||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
|
||||||
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
|
||||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
|
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
|
||||||
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "claude-1-100k", "claude-2", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
|
||||||
|
|
||||||
|
|
||||||
# ChatGLM(2) Finetune Model Path (如果使用ChatGLM2微调模型,需要把"chatglmft"加入AVAIL_LLM_MODELS中)
|
# ChatGLM(2) Finetune Model Path (如果使用ChatGLM2微调模型,需要把"chatglmft"加入AVAIL_LLM_MODELS中)
|
||||||
@ -89,9 +89,11 @@ CONCURRENT_COUNT = 100
|
|||||||
# 是否在提交时自动清空输入框
|
# 是否在提交时自动清空输入框
|
||||||
AUTO_CLEAR_TXT = False
|
AUTO_CLEAR_TXT = False
|
||||||
|
|
||||||
|
|
||||||
# 色彩主体,可选 ["Default", "Chuanhu-Small-and-Beautiful"]
|
# 色彩主体,可选 ["Default", "Chuanhu-Small-and-Beautiful"]
|
||||||
THEME = "Default"
|
THEME = "Default"
|
||||||
|
|
||||||
|
|
||||||
# 加一个live2d装饰
|
# 加一个live2d装饰
|
||||||
ADD_WAIFU = False
|
ADD_WAIFU = False
|
||||||
|
|
||||||
@ -131,3 +133,7 @@ put your new bing cookies here
|
|||||||
ENABLE_AUDIO = False
|
ENABLE_AUDIO = False
|
||||||
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
ALIYUN_TOKEN="" # 例如 f37f30e0f9934c34a992f6f64f7eba4f
|
||||||
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
ALIYUN_APPKEY="" # 例如 RoPlZrM88DnAFkZK
|
||||||
|
|
||||||
|
|
||||||
|
# Claude API KEY
|
||||||
|
ANTHROPIC_API_KEY = ""
|
@ -170,6 +170,29 @@ model_info = {
|
|||||||
|
|
||||||
AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL")
|
AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL")
|
||||||
AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL]
|
AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL]
|
||||||
|
if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
|
||||||
|
from .bridge_claude import predict_no_ui_long_connection as claude_noui
|
||||||
|
from .bridge_claude import predict as claude_ui
|
||||||
|
model_info.update({
|
||||||
|
"claude-1-100k": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 8196,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
|
model_info.update({
|
||||||
|
"claude-2": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": None,
|
||||||
|
"max_token": 8196,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
if "jittorllms_rwkv" in AVAIL_LLM_MODELS:
|
if "jittorllms_rwkv" in AVAIL_LLM_MODELS:
|
||||||
from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui
|
from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui
|
||||||
from .bridge_jittorllms_rwkv import predict as rwkv_ui
|
from .bridge_jittorllms_rwkv import predict as rwkv_ui
|
||||||
|
231
request_llm/bridge_claude.py
Normal file
231
request_llm/bridge_claude.py
Normal file
@ -0,0 +1,231 @@
|
|||||||
|
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||||||
|
|
||||||
|
"""
|
||||||
|
该文件中主要包含2个函数
|
||||||
|
|
||||||
|
不具备多线程能力的函数:
|
||||||
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||||
|
|
||||||
|
具备多线程调用能力的函数
|
||||||
|
2. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
import gradio as gr
|
||||||
|
import logging
|
||||||
|
import traceback
|
||||||
|
import requests
|
||||||
|
import importlib
|
||||||
|
|
||||||
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
|
from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate
|
||||||
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \
|
||||||
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY')
|
||||||
|
|
||||||
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
|
|
||||||
|
def get_full_error(chunk, stream_response):
|
||||||
|
"""
|
||||||
|
获取完整的从Openai返回的报错
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk += next(stream_response)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
|
inputs:
|
||||||
|
是本次问询的输入
|
||||||
|
sys_prompt:
|
||||||
|
系统静默prompt
|
||||||
|
llm_kwargs:
|
||||||
|
chatGPT的内部调优参数
|
||||||
|
history:
|
||||||
|
是之前的对话列表
|
||||||
|
observe_window = None:
|
||||||
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
|
"""
|
||||||
|
from anthropic import Anthropic
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
|
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||||
|
retry = 0
|
||||||
|
if len(ANTHROPIC_API_KEY) == 0:
|
||||||
|
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=False
|
||||||
|
from .bridge_all import model_info
|
||||||
|
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
||||||
|
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
# with ProxyNetworkActivate()
|
||||||
|
stream = anthropic.completions.create(
|
||||||
|
prompt=prompt,
|
||||||
|
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
||||||
|
model=llm_kwargs['llm_model'],
|
||||||
|
stream=True,
|
||||||
|
temperature = llm_kwargs['temperature']
|
||||||
|
)
|
||||||
|
break
|
||||||
|
except Exception as e:
|
||||||
|
retry += 1
|
||||||
|
traceback.print_exc()
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
result = ''
|
||||||
|
try:
|
||||||
|
for completion in stream:
|
||||||
|
result += completion.completion
|
||||||
|
if not console_slience: print(completion.completion, end='')
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1: observe_window[0] += completion.completion
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
except Exception as e:
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,流式获取输出。
|
||||||
|
用于基础的对话功能。
|
||||||
|
inputs 是本次问询的输入
|
||||||
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
|
"""
|
||||||
|
from anthropic import Anthropic
|
||||||
|
if len(ANTHROPIC_API_KEY) == 0:
|
||||||
|
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
if additional_fn is not None:
|
||||||
|
import core_functional
|
||||||
|
importlib.reload(core_functional) # 热更新prompt
|
||||||
|
core_functional = core_functional.get_core_functions()
|
||||||
|
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||||||
|
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||||||
|
|
||||||
|
raw_input = inputs
|
||||||
|
logging.info(f'[raw_input] {raw_input}')
|
||||||
|
chatbot.append((inputs, ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
|
try:
|
||||||
|
prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
except RuntimeError as e:
|
||||||
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
history.append(inputs); history.append("")
|
||||||
|
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=True
|
||||||
|
from .bridge_all import model_info
|
||||||
|
anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
|
||||||
|
# endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||||||
|
# with ProxyNetworkActivate()
|
||||||
|
stream = anthropic.completions.create(
|
||||||
|
prompt=prompt,
|
||||||
|
max_tokens_to_sample=4096, # The maximum number of tokens to generate before stopping.
|
||||||
|
model=llm_kwargs['llm_model'],
|
||||||
|
stream=True,
|
||||||
|
temperature = llm_kwargs['temperature']
|
||||||
|
)
|
||||||
|
|
||||||
|
break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||||
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
|
for completion in stream:
|
||||||
|
try:
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + completion.completion
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
from toolbox import regular_txt_to_markdown
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py
|
||||||
|
def convert_messages_to_prompt(messages):
|
||||||
|
prompt = ""
|
||||||
|
role_map = {
|
||||||
|
"system": "Human",
|
||||||
|
"user": "Human",
|
||||||
|
"assistant": "Assistant",
|
||||||
|
}
|
||||||
|
for message in messages:
|
||||||
|
role = message["role"]
|
||||||
|
content = message["content"]
|
||||||
|
transformed_role = role_map[role]
|
||||||
|
prompt += f"\n\n{transformed_role.capitalize()}: {content}"
|
||||||
|
prompt += "\n\nAssistant: "
|
||||||
|
return prompt
|
||||||
|
|
||||||
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
"""
|
||||||
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
|
"""
|
||||||
|
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
|
messages = [{"role": "system", "content": system_prompt}]
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "user"
|
||||||
|
what_i_have_asked["content"] = history[index]
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "assistant"
|
||||||
|
what_gpt_answer["content"] = history[index+1]
|
||||||
|
if what_i_have_asked["content"] != "":
|
||||||
|
if what_gpt_answer["content"] == "": continue
|
||||||
|
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['content'] = what_gpt_answer['content']
|
||||||
|
|
||||||
|
what_i_ask_now = {}
|
||||||
|
what_i_ask_now["role"] = "user"
|
||||||
|
what_i_ask_now["content"] = inputs
|
||||||
|
messages.append(what_i_ask_now)
|
||||||
|
prompt = convert_messages_to_prompt(messages)
|
||||||
|
|
||||||
|
return prompt
|
||||||
|
|
||||||
|
|
@ -10,10 +10,11 @@ def validate_path():
|
|||||||
|
|
||||||
validate_path() # validate path so you can run from base directory
|
validate_path() # validate path so you can run from base directory
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
from request_llm.bridge_newbingfree import predict_no_ui_long_connection
|
# from request_llm.bridge_newbingfree import predict_no_ui_long_connection
|
||||||
# from request_llm.bridge_moss import predict_no_ui_long_connection
|
# from request_llm.bridge_moss import predict_no_ui_long_connection
|
||||||
# from request_llm.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
# from request_llm.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
||||||
# from request_llm.bridge_jittorllms_llama import predict_no_ui_long_connection
|
# from request_llm.bridge_jittorllms_llama import predict_no_ui_long_connection
|
||||||
|
from request_llm.bridge_claude import predict_no_ui_long_connection
|
||||||
|
|
||||||
llm_kwargs = {
|
llm_kwargs = {
|
||||||
'max_length': 512,
|
'max_length': 512,
|
||||||
@ -28,17 +29,6 @@ if __name__ == "__main__":
|
|||||||
print('final result:', result)
|
print('final result:', result)
|
||||||
|
|
||||||
|
|
||||||
result = predict_no_ui_long_connection(inputs="what is a hero?",
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
history=["hello world"],
|
|
||||||
sys_prompt="")
|
|
||||||
print('final result:', result)
|
|
||||||
|
|
||||||
result = predict_no_ui_long_connection(inputs="如何理解传奇?",
|
|
||||||
llm_kwargs=llm_kwargs,
|
|
||||||
history=[],
|
|
||||||
sys_prompt="")
|
|
||||||
print('final result:', result)
|
|
||||||
|
|
||||||
# # print(result)
|
# # print(result)
|
||||||
# from multiprocessing import Process, Pipe
|
# from multiprocessing import Process, Pipe
|
||||||
@ -56,7 +46,6 @@ if __name__ == "__main__":
|
|||||||
# os.chdir(root_dir_assume + '/request_llm/jittorllms')
|
# os.chdir(root_dir_assume + '/request_llm/jittorllms')
|
||||||
# sys.path.append(root_dir_assume + '/request_llm/jittorllms')
|
# sys.path.append(root_dir_assume + '/request_llm/jittorllms')
|
||||||
# validate_path() # validate path so you can run from base directory
|
# validate_path() # validate path so you can run from base directory
|
||||||
|
|
||||||
# jittorllms_model = None
|
# jittorllms_model = None
|
||||||
# import types
|
# import types
|
||||||
# try:
|
# try:
|
||||||
@ -70,7 +59,6 @@ if __name__ == "__main__":
|
|||||||
# except:
|
# except:
|
||||||
# # self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
|
# # self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
|
||||||
# raise RuntimeError("不能正常加载jittorllms的参数!")
|
# raise RuntimeError("不能正常加载jittorllms的参数!")
|
||||||
|
|
||||||
# x = GetGLMHandle()
|
# x = GetGLMHandle()
|
||||||
# x.start()
|
# x.start()
|
||||||
|
|
||||||
|
@ -9,6 +9,7 @@ prompt_toolkit
|
|||||||
latex2mathml
|
latex2mathml
|
||||||
python-docx
|
python-docx
|
||||||
mdtex2html
|
mdtex2html
|
||||||
|
anthropic
|
||||||
colorama
|
colorama
|
||||||
Markdown
|
Markdown
|
||||||
pygments
|
pygments
|
||||||
|
Loading…
x
Reference in New Issue
Block a user