support claude api
This commit is contained in:
		
							parent
							
								
									add98f4eeb
								
							
						
					
					
						commit
						6f21ae8939
					
				@ -71,7 +71,7 @@ MAX_RETRY = 2
 | 
				
			|||||||
# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
 | 
					# 模型选择是 (注意: LLM_MODEL是默认选中的模型, 它*必须*被包含在AVAIL_LLM_MODELS列表中 )
 | 
				
			||||||
LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
 | 
					LLM_MODEL = "gpt-3.5-turbo" # 可选 ↓↓↓
 | 
				
			||||||
AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
 | 
					AVAIL_LLM_MODELS = ["gpt-3.5-turbo-16k", "gpt-3.5-turbo", "azure-gpt-3.5", "api2d-gpt-3.5-turbo", "gpt-4", "api2d-gpt-4", "chatglm", "moss", "newbing", "stack-claude"]
 | 
				
			||||||
# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "newbing-free", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
 | 
					# P.S. 其他可用的模型还包括 ["gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "claude-1-100k", "claude-2", "jittorllms_rwkv", "jittorllms_pangualpha", "jittorllms_llama"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# ChatGLM(2) Finetune Model Path (如果使用ChatGLM2微调模型,需要把"chatglmft"加入AVAIL_LLM_MODELS中)
 | 
					# ChatGLM(2) Finetune Model Path (如果使用ChatGLM2微调模型,需要把"chatglmft"加入AVAIL_LLM_MODELS中)
 | 
				
			||||||
@ -89,9 +89,11 @@ CONCURRENT_COUNT = 100
 | 
				
			|||||||
# 是否在提交时自动清空输入框
 | 
					# 是否在提交时自动清空输入框
 | 
				
			||||||
AUTO_CLEAR_TXT = False
 | 
					AUTO_CLEAR_TXT = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 色彩主体,可选 ["Default", "Chuanhu-Small-and-Beautiful"]
 | 
					# 色彩主体,可选 ["Default", "Chuanhu-Small-and-Beautiful"]
 | 
				
			||||||
THEME = "Default"
 | 
					THEME = "Default"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 加一个live2d装饰
 | 
					# 加一个live2d装饰
 | 
				
			||||||
ADD_WAIFU = False
 | 
					ADD_WAIFU = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -131,3 +133,7 @@ put your new bing cookies here
 | 
				
			|||||||
ENABLE_AUDIO = False
 | 
					ENABLE_AUDIO = False
 | 
				
			||||||
ALIYUN_TOKEN=""    # 例如 f37f30e0f9934c34a992f6f64f7eba4f
 | 
					ALIYUN_TOKEN=""    # 例如 f37f30e0f9934c34a992f6f64f7eba4f
 | 
				
			||||||
ALIYUN_APPKEY=""   # 例如 RoPlZrM88DnAFkZK
 | 
					ALIYUN_APPKEY=""   # 例如 RoPlZrM88DnAFkZK
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Claude API KEY
 | 
				
			||||||
 | 
					ANTHROPIC_API_KEY = ""
 | 
				
			||||||
@ -170,6 +170,29 @@ model_info = {
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL")
 | 
					AVAIL_LLM_MODELS, LLM_MODEL = get_conf("AVAIL_LLM_MODELS", "LLM_MODEL")
 | 
				
			||||||
AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL]
 | 
					AVAIL_LLM_MODELS = AVAIL_LLM_MODELS + [LLM_MODEL]
 | 
				
			||||||
 | 
					if "claude-1-100k" in AVAIL_LLM_MODELS or "claude-2" in AVAIL_LLM_MODELS:
 | 
				
			||||||
 | 
					    from .bridge_claude import predict_no_ui_long_connection as claude_noui
 | 
				
			||||||
 | 
					    from .bridge_claude import predict as claude_ui
 | 
				
			||||||
 | 
					    model_info.update({
 | 
				
			||||||
 | 
					        "claude-1-100k": {
 | 
				
			||||||
 | 
					            "fn_with_ui": claude_ui,
 | 
				
			||||||
 | 
					            "fn_without_ui": claude_noui,
 | 
				
			||||||
 | 
					            "endpoint": None,
 | 
				
			||||||
 | 
					            "max_token": 8196,
 | 
				
			||||||
 | 
					            "tokenizer": tokenizer_gpt35,
 | 
				
			||||||
 | 
					            "token_cnt": get_token_num_gpt35,
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					    })
 | 
				
			||||||
 | 
					    model_info.update({
 | 
				
			||||||
 | 
					        "claude-2": {
 | 
				
			||||||
 | 
					            "fn_with_ui": claude_ui,
 | 
				
			||||||
 | 
					            "fn_without_ui": claude_noui,
 | 
				
			||||||
 | 
					            "endpoint": None,
 | 
				
			||||||
 | 
					            "max_token": 8196,
 | 
				
			||||||
 | 
					            "tokenizer": tokenizer_gpt35,
 | 
				
			||||||
 | 
					            "token_cnt": get_token_num_gpt35,
 | 
				
			||||||
 | 
					        },
 | 
				
			||||||
 | 
					    })
 | 
				
			||||||
if "jittorllms_rwkv" in AVAIL_LLM_MODELS:
 | 
					if "jittorllms_rwkv" in AVAIL_LLM_MODELS:
 | 
				
			||||||
    from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui
 | 
					    from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui
 | 
				
			||||||
    from .bridge_jittorllms_rwkv import predict as rwkv_ui
 | 
					    from .bridge_jittorllms_rwkv import predict as rwkv_ui
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										231
									
								
								request_llm/bridge_claude.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										231
									
								
								request_llm/bridge_claude.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,231 @@
 | 
				
			|||||||
 | 
					# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					    该文件中主要包含2个函数
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    不具备多线程能力的函数:
 | 
				
			||||||
 | 
					    1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    具备多线程调用能力的函数
 | 
				
			||||||
 | 
					    2. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import json
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import gradio as gr
 | 
				
			||||||
 | 
					import logging
 | 
				
			||||||
 | 
					import traceback
 | 
				
			||||||
 | 
					import requests
 | 
				
			||||||
 | 
					import importlib
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# config_private.py放自己的秘密如API和代理网址
 | 
				
			||||||
 | 
					# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
 | 
				
			||||||
 | 
					from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate
 | 
				
			||||||
 | 
					proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \
 | 
				
			||||||
 | 
					    get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
 | 
				
			||||||
 | 
					                  '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_full_error(chunk, stream_response):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					        获取完整的从Openai返回的报错
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    while True:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            chunk += next(stream_response)
 | 
				
			||||||
 | 
					        except:
 | 
				
			||||||
 | 
					            break
 | 
				
			||||||
 | 
					    return chunk
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
 | 
				
			||||||
 | 
					    inputs:
 | 
				
			||||||
 | 
					        是本次问询的输入
 | 
				
			||||||
 | 
					    sys_prompt:
 | 
				
			||||||
 | 
					        系统静默prompt
 | 
				
			||||||
 | 
					    llm_kwargs:
 | 
				
			||||||
 | 
					        chatGPT的内部调优参数
 | 
				
			||||||
 | 
					    history:
 | 
				
			||||||
 | 
					        是之前的对话列表
 | 
				
			||||||
 | 
					    observe_window = None:
 | 
				
			||||||
 | 
					        用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    from anthropic import Anthropic
 | 
				
			||||||
 | 
					    watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
 | 
				
			||||||
 | 
					    prompt = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
 | 
				
			||||||
 | 
					    retry = 0
 | 
				
			||||||
 | 
					    if len(ANTHROPIC_API_KEY) == 0:
 | 
				
			||||||
 | 
					        raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    while True:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            # make a POST request to the API endpoint, stream=False
 | 
				
			||||||
 | 
					            from .bridge_all import model_info
 | 
				
			||||||
 | 
					            anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
 | 
				
			||||||
 | 
					            # endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
 | 
				
			||||||
 | 
					            # with ProxyNetworkActivate()
 | 
				
			||||||
 | 
					            stream = anthropic.completions.create(
 | 
				
			||||||
 | 
					                prompt=prompt,
 | 
				
			||||||
 | 
					                max_tokens_to_sample=4096,       # The maximum number of tokens to generate before stopping.
 | 
				
			||||||
 | 
					                model=llm_kwargs['llm_model'],
 | 
				
			||||||
 | 
					                stream=True,
 | 
				
			||||||
 | 
					                temperature = llm_kwargs['temperature']
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            break
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            retry += 1
 | 
				
			||||||
 | 
					            traceback.print_exc()
 | 
				
			||||||
 | 
					            if retry > MAX_RETRY: raise TimeoutError
 | 
				
			||||||
 | 
					            if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
 | 
				
			||||||
 | 
					    result = ''
 | 
				
			||||||
 | 
					    try: 
 | 
				
			||||||
 | 
					        for completion in stream:
 | 
				
			||||||
 | 
					            result += completion.completion
 | 
				
			||||||
 | 
					            if not console_slience: print(completion.completion, end='')
 | 
				
			||||||
 | 
					            if observe_window is not None: 
 | 
				
			||||||
 | 
					                # 观测窗,把已经获取的数据显示出去
 | 
				
			||||||
 | 
					                if len(observe_window) >= 1: observe_window[0] += completion.completion
 | 
				
			||||||
 | 
					                # 看门狗,如果超过期限没有喂狗,则终止
 | 
				
			||||||
 | 
					                if len(observe_window) >= 2:  
 | 
				
			||||||
 | 
					                    if (time.time()-observe_window[1]) > watch_dog_patience:
 | 
				
			||||||
 | 
					                        raise RuntimeError("用户取消了程序。")
 | 
				
			||||||
 | 
					    except Exception as e:
 | 
				
			||||||
 | 
					        traceback.print_exc()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    发送至chatGPT,流式获取输出。
 | 
				
			||||||
 | 
					    用于基础的对话功能。
 | 
				
			||||||
 | 
					    inputs 是本次问询的输入
 | 
				
			||||||
 | 
					    top_p, temperature是chatGPT的内部调优参数
 | 
				
			||||||
 | 
					    history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
 | 
				
			||||||
 | 
					    chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
 | 
				
			||||||
 | 
					    additional_fn代表点击的哪个按钮,按钮见functional.py
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    from anthropic import Anthropic
 | 
				
			||||||
 | 
					    if len(ANTHROPIC_API_KEY) == 0:
 | 
				
			||||||
 | 
					        chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
 | 
				
			||||||
 | 
					        yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    if additional_fn is not None:
 | 
				
			||||||
 | 
					        import core_functional
 | 
				
			||||||
 | 
					        importlib.reload(core_functional)    # 热更新prompt
 | 
				
			||||||
 | 
					        core_functional = core_functional.get_core_functions()
 | 
				
			||||||
 | 
					        if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs)  # 获取预处理函数(如果有的话)
 | 
				
			||||||
 | 
					        inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    raw_input = inputs
 | 
				
			||||||
 | 
					    logging.info(f'[raw_input] {raw_input}')
 | 
				
			||||||
 | 
					    chatbot.append((inputs, ""))
 | 
				
			||||||
 | 
					    yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        prompt = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
 | 
				
			||||||
 | 
					    except RuntimeError as e:
 | 
				
			||||||
 | 
					        chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
 | 
				
			||||||
 | 
					        yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
 | 
				
			||||||
 | 
					        return
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    history.append(inputs); history.append("")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    retry = 0
 | 
				
			||||||
 | 
					    while True:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            # make a POST request to the API endpoint, stream=True
 | 
				
			||||||
 | 
					            from .bridge_all import model_info
 | 
				
			||||||
 | 
					            anthropic = Anthropic(api_key=ANTHROPIC_API_KEY)
 | 
				
			||||||
 | 
					            # endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
 | 
				
			||||||
 | 
					            # with ProxyNetworkActivate()
 | 
				
			||||||
 | 
					            stream = anthropic.completions.create(
 | 
				
			||||||
 | 
					                prompt=prompt,
 | 
				
			||||||
 | 
					                max_tokens_to_sample=4096,       # The maximum number of tokens to generate before stopping.
 | 
				
			||||||
 | 
					                model=llm_kwargs['llm_model'],
 | 
				
			||||||
 | 
					                stream=True,
 | 
				
			||||||
 | 
					                temperature = llm_kwargs['temperature']
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            break
 | 
				
			||||||
 | 
					        except:
 | 
				
			||||||
 | 
					            retry += 1
 | 
				
			||||||
 | 
					            chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
 | 
				
			||||||
 | 
					            retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
 | 
				
			||||||
 | 
					            yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
 | 
				
			||||||
 | 
					            if retry > MAX_RETRY: raise TimeoutError
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    gpt_replying_buffer = ""
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    for completion in stream:
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            gpt_replying_buffer = gpt_replying_buffer + completion.completion
 | 
				
			||||||
 | 
					            history[-1] = gpt_replying_buffer
 | 
				
			||||||
 | 
					            chatbot[-1] = (history[-2], history[-1])
 | 
				
			||||||
 | 
					            yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            from toolbox import regular_txt_to_markdown
 | 
				
			||||||
 | 
					            tb_str = '```\n' + trimmed_format_exc() + '```'
 | 
				
			||||||
 | 
					            chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str}")
 | 
				
			||||||
 | 
					            yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + tb_str) # 刷新界面
 | 
				
			||||||
 | 
					            return
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# https://github.com/jtsang4/claude-to-chatgpt/blob/main/claude_to_chatgpt/adapter.py
 | 
				
			||||||
 | 
					def convert_messages_to_prompt(messages):
 | 
				
			||||||
 | 
					    prompt = ""
 | 
				
			||||||
 | 
					    role_map = {
 | 
				
			||||||
 | 
					        "system": "Human",
 | 
				
			||||||
 | 
					        "user": "Human",
 | 
				
			||||||
 | 
					        "assistant": "Assistant",
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    for message in messages:
 | 
				
			||||||
 | 
					        role = message["role"]
 | 
				
			||||||
 | 
					        content = message["content"]
 | 
				
			||||||
 | 
					        transformed_role = role_map[role]
 | 
				
			||||||
 | 
					        prompt += f"\n\n{transformed_role.capitalize()}: {content}"
 | 
				
			||||||
 | 
					    prompt += "\n\nAssistant: "
 | 
				
			||||||
 | 
					    return prompt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    conversation_cnt = len(history) // 2
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    messages = [{"role": "system", "content": system_prompt}]
 | 
				
			||||||
 | 
					    if conversation_cnt:
 | 
				
			||||||
 | 
					        for index in range(0, 2*conversation_cnt, 2):
 | 
				
			||||||
 | 
					            what_i_have_asked = {}
 | 
				
			||||||
 | 
					            what_i_have_asked["role"] = "user"
 | 
				
			||||||
 | 
					            what_i_have_asked["content"] = history[index]
 | 
				
			||||||
 | 
					            what_gpt_answer = {}
 | 
				
			||||||
 | 
					            what_gpt_answer["role"] = "assistant"
 | 
				
			||||||
 | 
					            what_gpt_answer["content"] = history[index+1]
 | 
				
			||||||
 | 
					            if what_i_have_asked["content"] != "":
 | 
				
			||||||
 | 
					                if what_gpt_answer["content"] == "": continue
 | 
				
			||||||
 | 
					                if what_gpt_answer["content"] == timeout_bot_msg: continue
 | 
				
			||||||
 | 
					                messages.append(what_i_have_asked)
 | 
				
			||||||
 | 
					                messages.append(what_gpt_answer)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                messages[-1]['content'] = what_gpt_answer['content']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    what_i_ask_now = {}
 | 
				
			||||||
 | 
					    what_i_ask_now["role"] = "user"
 | 
				
			||||||
 | 
					    what_i_ask_now["content"] = inputs
 | 
				
			||||||
 | 
					    messages.append(what_i_ask_now)
 | 
				
			||||||
 | 
					    prompt = convert_messages_to_prompt(messages)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return prompt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -10,10 +10,11 @@ def validate_path():
 | 
				
			|||||||
    
 | 
					    
 | 
				
			||||||
validate_path() # validate path so you can run from base directory
 | 
					validate_path() # validate path so you can run from base directory
 | 
				
			||||||
if __name__ == "__main__":
 | 
					if __name__ == "__main__":
 | 
				
			||||||
    from request_llm.bridge_newbingfree import predict_no_ui_long_connection
 | 
					    # from request_llm.bridge_newbingfree import predict_no_ui_long_connection
 | 
				
			||||||
    # from request_llm.bridge_moss import predict_no_ui_long_connection
 | 
					    # from request_llm.bridge_moss import predict_no_ui_long_connection
 | 
				
			||||||
    # from request_llm.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
 | 
					    # from request_llm.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
 | 
				
			||||||
    # from request_llm.bridge_jittorllms_llama import predict_no_ui_long_connection
 | 
					    # from request_llm.bridge_jittorllms_llama import predict_no_ui_long_connection
 | 
				
			||||||
 | 
					    from request_llm.bridge_claude import predict_no_ui_long_connection
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    llm_kwargs = {
 | 
					    llm_kwargs = {
 | 
				
			||||||
        'max_length': 512,
 | 
					        'max_length': 512,
 | 
				
			||||||
@ -28,17 +29,6 @@ if __name__ == "__main__":
 | 
				
			|||||||
    print('final result:', result)
 | 
					    print('final result:', result)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    result = predict_no_ui_long_connection(inputs="what is a hero?", 
 | 
					 | 
				
			||||||
                                        llm_kwargs=llm_kwargs,
 | 
					 | 
				
			||||||
                                        history=["hello world"],
 | 
					 | 
				
			||||||
                                        sys_prompt="")
 | 
					 | 
				
			||||||
    print('final result:', result)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    result = predict_no_ui_long_connection(inputs="如何理解传奇?", 
 | 
					 | 
				
			||||||
                                        llm_kwargs=llm_kwargs,
 | 
					 | 
				
			||||||
                                        history=[],
 | 
					 | 
				
			||||||
                                        sys_prompt="")
 | 
					 | 
				
			||||||
    print('final result:', result)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # # print(result)
 | 
					    # # print(result)
 | 
				
			||||||
    # from multiprocessing import Process, Pipe
 | 
					    # from multiprocessing import Process, Pipe
 | 
				
			||||||
@ -56,7 +46,6 @@ if __name__ == "__main__":
 | 
				
			|||||||
    #             os.chdir(root_dir_assume + '/request_llm/jittorllms')
 | 
					    #             os.chdir(root_dir_assume + '/request_llm/jittorllms')
 | 
				
			||||||
    #             sys.path.append(root_dir_assume + '/request_llm/jittorllms')
 | 
					    #             sys.path.append(root_dir_assume + '/request_llm/jittorllms')
 | 
				
			||||||
    #         validate_path() # validate path so you can run from base directory
 | 
					    #         validate_path() # validate path so you can run from base directory
 | 
				
			||||||
 | 
					 | 
				
			||||||
    #         jittorllms_model = None
 | 
					    #         jittorllms_model = None
 | 
				
			||||||
    #         import types
 | 
					    #         import types
 | 
				
			||||||
    #         try:
 | 
					    #         try:
 | 
				
			||||||
@ -70,7 +59,6 @@ if __name__ == "__main__":
 | 
				
			|||||||
    #         except:
 | 
					    #         except:
 | 
				
			||||||
    #             # self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
 | 
					    #             # self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
 | 
				
			||||||
    #             raise RuntimeError("不能正常加载jittorllms的参数!")
 | 
					    #             raise RuntimeError("不能正常加载jittorllms的参数!")
 | 
				
			||||||
            
 | 
					 | 
				
			||||||
    # x = GetGLMHandle()
 | 
					    # x = GetGLMHandle()
 | 
				
			||||||
    # x.start()
 | 
					    # x.start()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -9,6 +9,7 @@ prompt_toolkit
 | 
				
			|||||||
latex2mathml
 | 
					latex2mathml
 | 
				
			||||||
python-docx
 | 
					python-docx
 | 
				
			||||||
mdtex2html
 | 
					mdtex2html
 | 
				
			||||||
 | 
					anthropic
 | 
				
			||||||
colorama
 | 
					colorama
 | 
				
			||||||
Markdown
 | 
					Markdown
 | 
				
			||||||
pygments
 | 
					pygments
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user