Merge pull request #4 from hodanov/feature/add_sd_x2_latent_upscaler

Add Real-ESRGAN
This commit is contained in:
hodanov 2023-06-12 11:27:05 +09:00 committed by GitHub
commit 0583184e2d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 111 additions and 36 deletions

View File

@ -1,5 +1,10 @@
FROM python:3.11.3-slim-bullseye
COPY requirements.txt /
RUN apt update \
&& apt install -y wget git \
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 --pre xformers
&& apt install -y wget git libgl1-mesa-glx libglib2.0-0 \
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 \
&& mkdir -p /vol/cache/esrgan \
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /vol/cache/esrgan \
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth -P /vol/cache/esrgan \
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P /vol/cache/esrgan \
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth -P /vol/cache/esrgan

View File

@ -1,9 +1,9 @@
run:
modal run sd_cli.py \
--prompt "a woman with bob hair" \
--prompt "A woman with bob hair" \
--n-prompt "" \
--height 768 \
--width 512 \
--samples 5 \
--steps 20 \
--upscaler "sd_x2_latent_upscaler"
--steps 50 \
--upscaler "RealESRGAN_x4plus_anime_6B"

View File

@ -1,9 +1,17 @@
accelerate
scipy
diffusers[torch]
safetensors
diffusers[torch]==0.16.1
onnxruntime==1.15.0
safetensors==0.3.1
torch==2.0.1+cu117
transformers==4.29.2
xformers==0.0.20
realesrgan
basicsr>=1.4.2
facexlib>=0.2.5
gfpgan>=1.3.5
numpy
opencv-python
Pillow
torchvision
torchmetrics
omegaconf
transformers
tqdm

112
sd_cli.py
View File

@ -22,6 +22,13 @@ def download_models():
model_repo_id = os.environ["MODEL_REPO_ID"]
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
vae = diffusers.AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse",
use_auth_token=hugging_face_token,
cache_dir=cache_path,
)
vae.save_pretrained(cache_path, safe_serialization=True)
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
model_repo_id,
subfolder="scheduler",
@ -68,6 +75,11 @@ class StableDiffusion:
torch.backends.cuda.matmul.allow_tf32 = True
vae = diffusers.AutoencoderKL.from_pretrained(
cache_path,
subfolder="vae",
)
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
cache_path,
subfolder="scheduler",
@ -76,21 +88,12 @@ class StableDiffusion:
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
scheduler=scheduler,
vae=vae,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
).to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
).to("cuda")
self.upscaler.enable_xformers_memory_efficient_attention()
# model_id = "stabilityai/stable-diffusion-x4-upscaler"
# self.upscaler = diffusers.StableDiffusionUpscalePipeline.from_pretrained(
# , revision="fp16", torch_dtype=torch.float16
# ).to("cuda")
# self.upscaler.enable_xformers_memory_efficient_attention()
@method()
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
"""
@ -100,7 +103,7 @@ class StableDiffusion:
with torch.inference_mode():
with torch.autocast("cuda"):
images = self.pipe(
base_images = self.pipe(
[inputs["prompt"]] * int(inputs["batch_size"]),
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
height=inputs["height"],
@ -110,26 +113,85 @@ class StableDiffusion:
max_embeddings_multiples=inputs["max_embeddings_multiples"],
).images
if inputs["upscaler"] != "":
uplcaled_images = self.upscale(
base_images=base_images,
model_name="RealESRGAN_x4plus",
scale_factor=4,
half_precision=False,
tile=700,
)
base_images.extend(uplcaled_images)
image_output = []
for image in images:
for image in base_images:
with io.BytesIO() as buf:
image.save(buf, format="PNG")
image_output.append(buf.getvalue())
if inputs["upscaler"] != "":
upscaled_images = self.upscaler(
prompt=inputs["prompt"],
image=images,
num_inference_steps=inputs["steps"],
guidance_scale=0,
).images
for image in upscaled_images:
with io.BytesIO() as buf:
image.save(buf, format="PNG")
image_output.append(buf.getvalue())
return image_output
@method()
def upscale(
self,
base_images: list[Image.Image],
model_name: str = "RealESRGAN_x4plus",
scale_factor: float = 4,
half_precision: bool = False,
tile: int = 0,
tile_pad: int = 10,
pre_pad: int = 0,
) -> list[Image.Image]:
"""
Upscales the given images using the given model.
https://github.com/xinntao/Real-ESRGAN
"""
import numpy
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from realesrgan import RealESRGANer
from tqdm import tqdm
if model_name == "RealESRGAN_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRNet_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x4plus_anime_6B":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x2plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
else:
raise NotImplementedError("Model name not supported")
upsampler = RealESRGANer(
scale=netscale,
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
dni_weight=None,
model=upscale_model,
tile=tile,
tile_pad=tile_pad,
pre_pad=pre_pad,
half=half_precision,
gpu_id=None,
)
torch.cuda.empty_cache()
upscaled_imgs = []
with tqdm(total=len(base_images)) as progress_bar:
for i, img in enumerate(base_images):
img = numpy.array(img)
enhance_result = upsampler.enhance(img)[0]
upscaled_imgs.append(Image.fromarray(enhance_result))
progress_bar.update(1)
torch.cuda.empty_cache()
return upscaled_imgs
@stub.local_entrypoint()
def entrypoint(