Merge pull request #4 from hodanov/feature/add_sd_x2_latent_upscaler
Add Real-ESRGAN
This commit is contained in:
commit
0583184e2d
@ -1,5 +1,10 @@
|
|||||||
FROM python:3.11.3-slim-bullseye
|
FROM python:3.11.3-slim-bullseye
|
||||||
COPY requirements.txt /
|
COPY requirements.txt /
|
||||||
RUN apt update \
|
RUN apt update \
|
||||||
&& apt install -y wget git \
|
&& apt install -y wget git libgl1-mesa-glx libglib2.0-0 \
|
||||||
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 --pre xformers
|
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 \
|
||||||
|
&& mkdir -p /vol/cache/esrgan \
|
||||||
|
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /vol/cache/esrgan \
|
||||||
|
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth -P /vol/cache/esrgan \
|
||||||
|
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P /vol/cache/esrgan \
|
||||||
|
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth -P /vol/cache/esrgan
|
||||||
|
|||||||
6
Makefile
6
Makefile
@ -1,9 +1,9 @@
|
|||||||
run:
|
run:
|
||||||
modal run sd_cli.py \
|
modal run sd_cli.py \
|
||||||
--prompt "a woman with bob hair" \
|
--prompt "A woman with bob hair" \
|
||||||
--n-prompt "" \
|
--n-prompt "" \
|
||||||
--height 768 \
|
--height 768 \
|
||||||
--width 512 \
|
--width 512 \
|
||||||
--samples 5 \
|
--samples 5 \
|
||||||
--steps 20 \
|
--steps 50 \
|
||||||
--upscaler "sd_x2_latent_upscaler"
|
--upscaler "RealESRGAN_x4plus_anime_6B"
|
||||||
|
|||||||
@ -1,9 +1,17 @@
|
|||||||
accelerate
|
accelerate
|
||||||
scipy
|
diffusers[torch]==0.16.1
|
||||||
diffusers[torch]
|
onnxruntime==1.15.0
|
||||||
safetensors
|
safetensors==0.3.1
|
||||||
torch==2.0.1+cu117
|
torch==2.0.1+cu117
|
||||||
|
transformers==4.29.2
|
||||||
|
xformers==0.0.20
|
||||||
|
|
||||||
|
realesrgan
|
||||||
|
basicsr>=1.4.2
|
||||||
|
facexlib>=0.2.5
|
||||||
|
gfpgan>=1.3.5
|
||||||
|
numpy
|
||||||
|
opencv-python
|
||||||
|
Pillow
|
||||||
torchvision
|
torchvision
|
||||||
torchmetrics
|
tqdm
|
||||||
omegaconf
|
|
||||||
transformers
|
|
||||||
|
|||||||
112
sd_cli.py
112
sd_cli.py
@ -22,6 +22,13 @@ def download_models():
|
|||||||
model_repo_id = os.environ["MODEL_REPO_ID"]
|
model_repo_id = os.environ["MODEL_REPO_ID"]
|
||||||
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
|
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
|
||||||
|
|
||||||
|
vae = diffusers.AutoencoderKL.from_pretrained(
|
||||||
|
"stabilityai/sd-vae-ft-mse",
|
||||||
|
use_auth_token=hugging_face_token,
|
||||||
|
cache_dir=cache_path,
|
||||||
|
)
|
||||||
|
vae.save_pretrained(cache_path, safe_serialization=True)
|
||||||
|
|
||||||
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||||
model_repo_id,
|
model_repo_id,
|
||||||
subfolder="scheduler",
|
subfolder="scheduler",
|
||||||
@ -68,6 +75,11 @@ class StableDiffusion:
|
|||||||
|
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
|
|
||||||
|
vae = diffusers.AutoencoderKL.from_pretrained(
|
||||||
|
cache_path,
|
||||||
|
subfolder="vae",
|
||||||
|
)
|
||||||
|
|
||||||
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||||
cache_path,
|
cache_path,
|
||||||
subfolder="scheduler",
|
subfolder="scheduler",
|
||||||
@ -76,21 +88,12 @@ class StableDiffusion:
|
|||||||
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||||
cache_path,
|
cache_path,
|
||||||
scheduler=scheduler,
|
scheduler=scheduler,
|
||||||
|
vae=vae,
|
||||||
custom_pipeline="lpw_stable_diffusion",
|
custom_pipeline="lpw_stable_diffusion",
|
||||||
|
torch_dtype=torch.float16,
|
||||||
).to("cuda")
|
).to("cuda")
|
||||||
self.pipe.enable_xformers_memory_efficient_attention()
|
self.pipe.enable_xformers_memory_efficient_attention()
|
||||||
|
|
||||||
self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
|
|
||||||
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
|
|
||||||
).to("cuda")
|
|
||||||
self.upscaler.enable_xformers_memory_efficient_attention()
|
|
||||||
|
|
||||||
# model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
|
||||||
# self.upscaler = diffusers.StableDiffusionUpscalePipeline.from_pretrained(
|
|
||||||
# , revision="fp16", torch_dtype=torch.float16
|
|
||||||
# ).to("cuda")
|
|
||||||
# self.upscaler.enable_xformers_memory_efficient_attention()
|
|
||||||
|
|
||||||
@method()
|
@method()
|
||||||
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
|
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
|
||||||
"""
|
"""
|
||||||
@ -100,7 +103,7 @@ class StableDiffusion:
|
|||||||
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
with torch.autocast("cuda"):
|
with torch.autocast("cuda"):
|
||||||
images = self.pipe(
|
base_images = self.pipe(
|
||||||
[inputs["prompt"]] * int(inputs["batch_size"]),
|
[inputs["prompt"]] * int(inputs["batch_size"]),
|
||||||
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
|
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
|
||||||
height=inputs["height"],
|
height=inputs["height"],
|
||||||
@ -110,26 +113,85 @@ class StableDiffusion:
|
|||||||
max_embeddings_multiples=inputs["max_embeddings_multiples"],
|
max_embeddings_multiples=inputs["max_embeddings_multiples"],
|
||||||
).images
|
).images
|
||||||
|
|
||||||
image_output = []
|
|
||||||
for image in images:
|
|
||||||
with io.BytesIO() as buf:
|
|
||||||
image.save(buf, format="PNG")
|
|
||||||
image_output.append(buf.getvalue())
|
|
||||||
|
|
||||||
if inputs["upscaler"] != "":
|
if inputs["upscaler"] != "":
|
||||||
upscaled_images = self.upscaler(
|
uplcaled_images = self.upscale(
|
||||||
prompt=inputs["prompt"],
|
base_images=base_images,
|
||||||
image=images,
|
model_name="RealESRGAN_x4plus",
|
||||||
num_inference_steps=inputs["steps"],
|
scale_factor=4,
|
||||||
guidance_scale=0,
|
half_precision=False,
|
||||||
).images
|
tile=700,
|
||||||
for image in upscaled_images:
|
)
|
||||||
|
base_images.extend(uplcaled_images)
|
||||||
|
|
||||||
|
image_output = []
|
||||||
|
for image in base_images:
|
||||||
with io.BytesIO() as buf:
|
with io.BytesIO() as buf:
|
||||||
image.save(buf, format="PNG")
|
image.save(buf, format="PNG")
|
||||||
image_output.append(buf.getvalue())
|
image_output.append(buf.getvalue())
|
||||||
|
|
||||||
return image_output
|
return image_output
|
||||||
|
|
||||||
|
@method()
|
||||||
|
def upscale(
|
||||||
|
self,
|
||||||
|
base_images: list[Image.Image],
|
||||||
|
model_name: str = "RealESRGAN_x4plus",
|
||||||
|
scale_factor: float = 4,
|
||||||
|
half_precision: bool = False,
|
||||||
|
tile: int = 0,
|
||||||
|
tile_pad: int = 10,
|
||||||
|
pre_pad: int = 0,
|
||||||
|
) -> list[Image.Image]:
|
||||||
|
"""
|
||||||
|
Upscales the given images using the given model.
|
||||||
|
https://github.com/xinntao/Real-ESRGAN
|
||||||
|
"""
|
||||||
|
import numpy
|
||||||
|
import torch
|
||||||
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||||
|
from PIL import Image
|
||||||
|
from realesrgan import RealESRGANer
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
if model_name == "RealESRGAN_x4plus":
|
||||||
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||||
|
netscale = 4
|
||||||
|
elif model_name == "RealESRNet_x4plus":
|
||||||
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||||
|
netscale = 4
|
||||||
|
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
||||||
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
||||||
|
netscale = 4
|
||||||
|
elif model_name == "RealESRGAN_x2plus":
|
||||||
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
||||||
|
netscale = 2
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Model name not supported")
|
||||||
|
|
||||||
|
upsampler = RealESRGANer(
|
||||||
|
scale=netscale,
|
||||||
|
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
||||||
|
dni_weight=None,
|
||||||
|
model=upscale_model,
|
||||||
|
tile=tile,
|
||||||
|
tile_pad=tile_pad,
|
||||||
|
pre_pad=pre_pad,
|
||||||
|
half=half_precision,
|
||||||
|
gpu_id=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
upscaled_imgs = []
|
||||||
|
with tqdm(total=len(base_images)) as progress_bar:
|
||||||
|
for i, img in enumerate(base_images):
|
||||||
|
img = numpy.array(img)
|
||||||
|
enhance_result = upsampler.enhance(img)[0]
|
||||||
|
upscaled_imgs.append(Image.fromarray(enhance_result))
|
||||||
|
progress_bar.update(1)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
return upscaled_imgs
|
||||||
|
|
||||||
|
|
||||||
@stub.local_entrypoint()
|
@stub.local_entrypoint()
|
||||||
def entrypoint(
|
def entrypoint(
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user