Merge pull request #4 from hodanov/feature/add_sd_x2_latent_upscaler
Add Real-ESRGAN
This commit is contained in:
		
						commit
						0583184e2d
					
				@ -1,5 +1,10 @@
 | 
			
		||||
FROM python:3.11.3-slim-bullseye
 | 
			
		||||
COPY requirements.txt /
 | 
			
		||||
RUN apt update \
 | 
			
		||||
    && apt install -y wget git \
 | 
			
		||||
    && pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 --pre xformers
 | 
			
		||||
    && apt install -y wget git libgl1-mesa-glx libglib2.0-0 \
 | 
			
		||||
    && pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 \
 | 
			
		||||
    && mkdir -p /vol/cache/esrgan \
 | 
			
		||||
    && wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /vol/cache/esrgan \
 | 
			
		||||
    && wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth -P /vol/cache/esrgan \
 | 
			
		||||
    && wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P /vol/cache/esrgan \
 | 
			
		||||
    && wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth -P /vol/cache/esrgan
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										6
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										6
									
								
								Makefile
									
									
									
									
									
								
							@ -1,9 +1,9 @@
 | 
			
		||||
run:
 | 
			
		||||
	modal run sd_cli.py \
 | 
			
		||||
	--prompt "a woman with bob hair" \
 | 
			
		||||
	--prompt "A woman with bob hair" \
 | 
			
		||||
	--n-prompt "" \
 | 
			
		||||
	--height 768 \
 | 
			
		||||
	--width 512 \
 | 
			
		||||
	--samples 5 \
 | 
			
		||||
	--steps 20 \
 | 
			
		||||
	--upscaler "sd_x2_latent_upscaler"
 | 
			
		||||
	--steps 50 \
 | 
			
		||||
	--upscaler "RealESRGAN_x4plus_anime_6B"
 | 
			
		||||
 | 
			
		||||
@ -1,9 +1,17 @@
 | 
			
		||||
accelerate
 | 
			
		||||
scipy
 | 
			
		||||
diffusers[torch]
 | 
			
		||||
safetensors
 | 
			
		||||
diffusers[torch]==0.16.1
 | 
			
		||||
onnxruntime==1.15.0
 | 
			
		||||
safetensors==0.3.1
 | 
			
		||||
torch==2.0.1+cu117
 | 
			
		||||
transformers==4.29.2
 | 
			
		||||
xformers==0.0.20
 | 
			
		||||
 | 
			
		||||
realesrgan
 | 
			
		||||
basicsr>=1.4.2
 | 
			
		||||
facexlib>=0.2.5
 | 
			
		||||
gfpgan>=1.3.5
 | 
			
		||||
numpy
 | 
			
		||||
opencv-python
 | 
			
		||||
Pillow
 | 
			
		||||
torchvision
 | 
			
		||||
torchmetrics
 | 
			
		||||
omegaconf
 | 
			
		||||
transformers
 | 
			
		||||
tqdm
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										112
									
								
								sd_cli.py
									
									
									
									
									
								
							
							
						
						
									
										112
									
								
								sd_cli.py
									
									
									
									
									
								
							@ -22,6 +22,13 @@ def download_models():
 | 
			
		||||
    model_repo_id = os.environ["MODEL_REPO_ID"]
 | 
			
		||||
    cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
 | 
			
		||||
 | 
			
		||||
    vae = diffusers.AutoencoderKL.from_pretrained(
 | 
			
		||||
        "stabilityai/sd-vae-ft-mse",
 | 
			
		||||
        use_auth_token=hugging_face_token,
 | 
			
		||||
        cache_dir=cache_path,
 | 
			
		||||
    )
 | 
			
		||||
    vae.save_pretrained(cache_path, safe_serialization=True)
 | 
			
		||||
 | 
			
		||||
    scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
			
		||||
        model_repo_id,
 | 
			
		||||
        subfolder="scheduler",
 | 
			
		||||
@ -68,6 +75,11 @@ class StableDiffusion:
 | 
			
		||||
 | 
			
		||||
        torch.backends.cuda.matmul.allow_tf32 = True
 | 
			
		||||
 | 
			
		||||
        vae = diffusers.AutoencoderKL.from_pretrained(
 | 
			
		||||
            cache_path,
 | 
			
		||||
            subfolder="vae",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
			
		||||
            cache_path,
 | 
			
		||||
            subfolder="scheduler",
 | 
			
		||||
@ -76,21 +88,12 @@ class StableDiffusion:
 | 
			
		||||
        self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
			
		||||
            cache_path,
 | 
			
		||||
            scheduler=scheduler,
 | 
			
		||||
            vae=vae,
 | 
			
		||||
            custom_pipeline="lpw_stable_diffusion",
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
        ).to("cuda")
 | 
			
		||||
        self.pipe.enable_xformers_memory_efficient_attention()
 | 
			
		||||
 | 
			
		||||
        self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
 | 
			
		||||
            "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
 | 
			
		||||
        ).to("cuda")
 | 
			
		||||
        self.upscaler.enable_xformers_memory_efficient_attention()
 | 
			
		||||
 | 
			
		||||
        # model_id = "stabilityai/stable-diffusion-x4-upscaler"
 | 
			
		||||
        # self.upscaler = diffusers.StableDiffusionUpscalePipeline.from_pretrained(
 | 
			
		||||
        #     , revision="fp16", torch_dtype=torch.float16
 | 
			
		||||
        # ).to("cuda")
 | 
			
		||||
        # self.upscaler.enable_xformers_memory_efficient_attention()
 | 
			
		||||
 | 
			
		||||
    @method()
 | 
			
		||||
    def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
 | 
			
		||||
        """
 | 
			
		||||
@ -100,7 +103,7 @@ class StableDiffusion:
 | 
			
		||||
 | 
			
		||||
        with torch.inference_mode():
 | 
			
		||||
            with torch.autocast("cuda"):
 | 
			
		||||
                images = self.pipe(
 | 
			
		||||
                base_images = self.pipe(
 | 
			
		||||
                    [inputs["prompt"]] * int(inputs["batch_size"]),
 | 
			
		||||
                    negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
 | 
			
		||||
                    height=inputs["height"],
 | 
			
		||||
@ -110,26 +113,85 @@ class StableDiffusion:
 | 
			
		||||
                    max_embeddings_multiples=inputs["max_embeddings_multiples"],
 | 
			
		||||
                ).images
 | 
			
		||||
 | 
			
		||||
        image_output = []
 | 
			
		||||
        for image in images:
 | 
			
		||||
            with io.BytesIO() as buf:
 | 
			
		||||
                image.save(buf, format="PNG")
 | 
			
		||||
                image_output.append(buf.getvalue())
 | 
			
		||||
 | 
			
		||||
        if inputs["upscaler"] != "":
 | 
			
		||||
            upscaled_images = self.upscaler(
 | 
			
		||||
                prompt=inputs["prompt"],
 | 
			
		||||
                image=images,
 | 
			
		||||
                num_inference_steps=inputs["steps"],
 | 
			
		||||
                guidance_scale=0,
 | 
			
		||||
            ).images
 | 
			
		||||
            for image in upscaled_images:
 | 
			
		||||
            uplcaled_images = self.upscale(
 | 
			
		||||
                base_images=base_images,
 | 
			
		||||
                model_name="RealESRGAN_x4plus",
 | 
			
		||||
                scale_factor=4,
 | 
			
		||||
                half_precision=False,
 | 
			
		||||
                tile=700,
 | 
			
		||||
            )
 | 
			
		||||
            base_images.extend(uplcaled_images)
 | 
			
		||||
 | 
			
		||||
        image_output = []
 | 
			
		||||
        for image in base_images:
 | 
			
		||||
            with io.BytesIO() as buf:
 | 
			
		||||
                image.save(buf, format="PNG")
 | 
			
		||||
                image_output.append(buf.getvalue())
 | 
			
		||||
 | 
			
		||||
        return image_output
 | 
			
		||||
 | 
			
		||||
    @method()
 | 
			
		||||
    def upscale(
 | 
			
		||||
        self,
 | 
			
		||||
        base_images: list[Image.Image],
 | 
			
		||||
        model_name: str = "RealESRGAN_x4plus",
 | 
			
		||||
        scale_factor: float = 4,
 | 
			
		||||
        half_precision: bool = False,
 | 
			
		||||
        tile: int = 0,
 | 
			
		||||
        tile_pad: int = 10,
 | 
			
		||||
        pre_pad: int = 0,
 | 
			
		||||
    ) -> list[Image.Image]:
 | 
			
		||||
        """
 | 
			
		||||
        Upscales the given images using the given model.
 | 
			
		||||
        https://github.com/xinntao/Real-ESRGAN
 | 
			
		||||
        """
 | 
			
		||||
        import numpy
 | 
			
		||||
        import torch
 | 
			
		||||
        from basicsr.archs.rrdbnet_arch import RRDBNet
 | 
			
		||||
        from PIL import Image
 | 
			
		||||
        from realesrgan import RealESRGANer
 | 
			
		||||
        from tqdm import tqdm
 | 
			
		||||
 | 
			
		||||
        if model_name == "RealESRGAN_x4plus":
 | 
			
		||||
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
 | 
			
		||||
            netscale = 4
 | 
			
		||||
        elif model_name == "RealESRNet_x4plus":
 | 
			
		||||
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
 | 
			
		||||
            netscale = 4
 | 
			
		||||
        elif model_name == "RealESRGAN_x4plus_anime_6B":
 | 
			
		||||
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
 | 
			
		||||
            netscale = 4
 | 
			
		||||
        elif model_name == "RealESRGAN_x2plus":
 | 
			
		||||
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
 | 
			
		||||
            netscale = 2
 | 
			
		||||
        else:
 | 
			
		||||
            raise NotImplementedError("Model name not supported")
 | 
			
		||||
 | 
			
		||||
        upsampler = RealESRGANer(
 | 
			
		||||
            scale=netscale,
 | 
			
		||||
            model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
 | 
			
		||||
            dni_weight=None,
 | 
			
		||||
            model=upscale_model,
 | 
			
		||||
            tile=tile,
 | 
			
		||||
            tile_pad=tile_pad,
 | 
			
		||||
            pre_pad=pre_pad,
 | 
			
		||||
            half=half_precision,
 | 
			
		||||
            gpu_id=None,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        torch.cuda.empty_cache()
 | 
			
		||||
        upscaled_imgs = []
 | 
			
		||||
        with tqdm(total=len(base_images)) as progress_bar:
 | 
			
		||||
            for i, img in enumerate(base_images):
 | 
			
		||||
                img = numpy.array(img)
 | 
			
		||||
                enhance_result = upsampler.enhance(img)[0]
 | 
			
		||||
                upscaled_imgs.append(Image.fromarray(enhance_result))
 | 
			
		||||
                progress_bar.update(1)
 | 
			
		||||
        torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
        return upscaled_imgs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.local_entrypoint()
 | 
			
		||||
def entrypoint(
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user