Implement img2img inference method using by sd15.
This commit is contained in:
parent
fcfb6b347f
commit
100795dd00
11
Makefile
11
Makefile
@ -20,6 +20,17 @@ img_by_sd15_txt2img:
|
|||||||
--fix-by-controlnet-tile "True" \
|
--fix-by-controlnet-tile "True" \
|
||||||
--output-format "avif"
|
--output-format "avif"
|
||||||
|
|
||||||
|
img_by_sd15_img2img:
|
||||||
|
cd ./sdcli && modal run sd15_img2img.py \
|
||||||
|
--prompt "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k" \
|
||||||
|
--n-prompt "" \
|
||||||
|
--samples 1 \
|
||||||
|
--steps 30 \
|
||||||
|
--upscaler "RealESRGAN_x2plus" \
|
||||||
|
--use-face-enhancer "False" \
|
||||||
|
--fix-by-controlnet-tile "True" \
|
||||||
|
--output-format "avif" \
|
||||||
|
--base-image-url "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
||||||
|
|
||||||
img_by_sdxl_txt2img:
|
img_by_sdxl_txt2img:
|
||||||
cd ./sdcli && modal run sdxl_txt2img.py \
|
cd ./sdcli && modal run sdxl_txt2img.py \
|
||||||
|
|||||||
58
sdcli/sd15_img2img.py
Normal file
58
sdcli/sd15_img2img.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
import time
|
||||||
|
|
||||||
|
import modal
|
||||||
|
import util
|
||||||
|
|
||||||
|
stub = modal.Stub("run-stable-diffusion-cli")
|
||||||
|
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15.run_img2img_inference")
|
||||||
|
|
||||||
|
|
||||||
|
@stub.local_entrypoint()
|
||||||
|
def main(
|
||||||
|
prompt: str,
|
||||||
|
n_prompt: str,
|
||||||
|
samples: int = 5,
|
||||||
|
batch_size: int = 1,
|
||||||
|
steps: int = 20,
|
||||||
|
seed: int = -1,
|
||||||
|
upscaler: str = "",
|
||||||
|
use_face_enhancer: str = "False",
|
||||||
|
fix_by_controlnet_tile: str = "False",
|
||||||
|
output_format: str = "png",
|
||||||
|
base_image_url: str = "",
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
This function is the entrypoint for the Runway CLI.
|
||||||
|
The function pass the given prompt to StableDiffusion on Modal,
|
||||||
|
gets back a list of images and outputs images to local.
|
||||||
|
"""
|
||||||
|
directory = util.make_directory()
|
||||||
|
seed_generated = seed
|
||||||
|
for i in range(samples):
|
||||||
|
if seed == -1:
|
||||||
|
seed_generated = util.generate_seed()
|
||||||
|
start_time = time.time()
|
||||||
|
images = stub.run_inference.remote(
|
||||||
|
prompt=prompt,
|
||||||
|
n_prompt=n_prompt,
|
||||||
|
batch_size=batch_size,
|
||||||
|
steps=steps,
|
||||||
|
seed=seed_generated,
|
||||||
|
upscaler=upscaler,
|
||||||
|
use_face_enhancer=use_face_enhancer == "True",
|
||||||
|
fix_by_controlnet_tile=fix_by_controlnet_tile == "True",
|
||||||
|
output_format=output_format,
|
||||||
|
base_image_url=base_image_url,
|
||||||
|
)
|
||||||
|
util.save_images(directory, images, seed_generated, i, output_format)
|
||||||
|
total_time = time.time() - start_time
|
||||||
|
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|
||||||
|
|
||||||
|
prompts: dict[str, int | str] = {
|
||||||
|
"prompt": prompt,
|
||||||
|
"n_prompt": n_prompt,
|
||||||
|
"samples": samples,
|
||||||
|
"batch_size": batch_size,
|
||||||
|
"steps": steps,
|
||||||
|
}
|
||||||
|
util.save_prompts(prompts)
|
||||||
@ -4,7 +4,7 @@ import modal
|
|||||||
import util
|
import util
|
||||||
|
|
||||||
stub = modal.Stub("run-stable-diffusion-cli")
|
stub = modal.Stub("run-stable-diffusion-cli")
|
||||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15Txt2Img.run_inference")
|
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15.run_txt2img_inference")
|
||||||
|
|
||||||
|
|
||||||
@stub.local_entrypoint()
|
@stub.local_entrypoint()
|
||||||
|
|||||||
@ -7,7 +7,7 @@ from setup import stub
|
|||||||
|
|
||||||
@stub.function(gpu="A10G")
|
@stub.function(gpu="A10G")
|
||||||
def main():
|
def main():
|
||||||
stable_diffusion_1_5.SD15Txt2Img
|
stable_diffusion_1_5.SD15
|
||||||
stable_diffusion_xl.SDXLTxt2Img
|
stable_diffusion_xl.SDXLTxt2Img
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -18,9 +18,9 @@ from setup import (
|
|||||||
gpu="A10G",
|
gpu="A10G",
|
||||||
secrets=[Secret.from_dotenv(__file__)],
|
secrets=[Secret.from_dotenv(__file__)],
|
||||||
)
|
)
|
||||||
class SD15Txt2Img:
|
class SD15:
|
||||||
"""
|
"""
|
||||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
SD15 is a class that runs inference using Stable Diffusion 1.5.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __enter__(self):
|
def __enter__(self):
|
||||||
@ -50,6 +50,7 @@ class SD15Txt2Img:
|
|||||||
self.cache_path,
|
self.cache_path,
|
||||||
subfolder="scheduler",
|
subfolder="scheduler",
|
||||||
)
|
)
|
||||||
|
# self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
|
||||||
|
|
||||||
vae = config.get("vae")
|
vae = config.get("vae")
|
||||||
if vae is not None:
|
if vae is not None:
|
||||||
@ -121,7 +122,7 @@ class SD15Txt2Img:
|
|||||||
return max_embeddings_multiples
|
return max_embeddings_multiples
|
||||||
|
|
||||||
@method()
|
@method()
|
||||||
def run_inference(
|
def run_txt2img_inference(
|
||||||
self,
|
self,
|
||||||
prompt: str,
|
prompt: str,
|
||||||
n_prompt: str,
|
n_prompt: str,
|
||||||
@ -148,7 +149,7 @@ class SD15Txt2Img:
|
|||||||
self.pipe.enable_xformers_memory_efficient_attention()
|
self.pipe.enable_xformers_memory_efficient_attention()
|
||||||
with torch.autocast("cuda"):
|
with torch.autocast("cuda"):
|
||||||
generated_images = self.pipe(
|
generated_images = self.pipe(
|
||||||
prompt * batch_size,
|
prompt=prompt * batch_size,
|
||||||
negative_prompt=n_prompt * batch_size,
|
negative_prompt=n_prompt * batch_size,
|
||||||
height=height,
|
height=height,
|
||||||
width=width,
|
width=width,
|
||||||
@ -202,6 +203,87 @@ class SD15Txt2Img:
|
|||||||
|
|
||||||
return image_output
|
return image_output
|
||||||
|
|
||||||
|
@method()
|
||||||
|
def run_img2img_inference(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
n_prompt: str,
|
||||||
|
batch_size: int = 1,
|
||||||
|
steps: int = 30,
|
||||||
|
seed: int = 1,
|
||||||
|
upscaler: str = "",
|
||||||
|
use_face_enhancer: bool = False,
|
||||||
|
fix_by_controlnet_tile: bool = False,
|
||||||
|
output_format: str = "png",
|
||||||
|
base_image_url: str = "",
|
||||||
|
) -> list[bytes]:
|
||||||
|
"""
|
||||||
|
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||||
|
"""
|
||||||
|
import pillow_avif # noqa: F401
|
||||||
|
import torch
|
||||||
|
from diffusers.utils import load_image
|
||||||
|
|
||||||
|
max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
|
||||||
|
generator = torch.Generator("cuda").manual_seed(seed)
|
||||||
|
self.pipe.to("cuda")
|
||||||
|
self.pipe.enable_vae_tiling()
|
||||||
|
self.pipe.enable_xformers_memory_efficient_attention()
|
||||||
|
with torch.autocast("cuda"):
|
||||||
|
generated_images = self.pipe(
|
||||||
|
prompt=prompt * batch_size,
|
||||||
|
negative_prompt=n_prompt * batch_size,
|
||||||
|
num_inference_steps=steps,
|
||||||
|
guidance_scale=7.5,
|
||||||
|
max_embeddings_multiples=max_embeddings_multiples,
|
||||||
|
generator=generator,
|
||||||
|
image=load_image(base_image_url),
|
||||||
|
).images
|
||||||
|
|
||||||
|
base_images = generated_images
|
||||||
|
|
||||||
|
"""
|
||||||
|
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
|
||||||
|
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
|
||||||
|
"""
|
||||||
|
if fix_by_controlnet_tile:
|
||||||
|
self.controlnet_pipe.to("cuda")
|
||||||
|
self.controlnet_pipe.enable_vae_tiling()
|
||||||
|
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
|
||||||
|
for image in base_images:
|
||||||
|
image = self._resize_image(image=image, scale_factor=2)
|
||||||
|
with torch.autocast("cuda"):
|
||||||
|
fixed_by_controlnet = self.controlnet_pipe(
|
||||||
|
prompt=prompt * batch_size,
|
||||||
|
negative_prompt=n_prompt * batch_size,
|
||||||
|
num_inference_steps=steps,
|
||||||
|
strength=0.3,
|
||||||
|
guidance_scale=7.5,
|
||||||
|
max_embeddings_multiples=max_embeddings_multiples,
|
||||||
|
generator=generator,
|
||||||
|
image=image,
|
||||||
|
).images
|
||||||
|
generated_images.extend(fixed_by_controlnet)
|
||||||
|
base_images = fixed_by_controlnet
|
||||||
|
|
||||||
|
if upscaler != "":
|
||||||
|
upscaled = self._upscale(
|
||||||
|
base_images=base_images,
|
||||||
|
half_precision=False,
|
||||||
|
tile=700,
|
||||||
|
upscaler=upscaler,
|
||||||
|
use_face_enhancer=use_face_enhancer,
|
||||||
|
)
|
||||||
|
generated_images.extend(upscaled)
|
||||||
|
|
||||||
|
image_output = []
|
||||||
|
for image in generated_images:
|
||||||
|
with io.BytesIO() as buf:
|
||||||
|
image.save(buf, format=output_format)
|
||||||
|
image_output.append(buf.getvalue())
|
||||||
|
|
||||||
|
return image_output
|
||||||
|
|
||||||
def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
|
def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
|
||||||
image = image.convert("RGB")
|
image = image.convert("RGB")
|
||||||
width, height = image.size
|
width, height = image.size
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user