Implement img2img inference method using by sd15.
This commit is contained in:
		
							parent
							
								
									fcfb6b347f
								
							
						
					
					
						commit
						100795dd00
					
				
							
								
								
									
										11
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										11
									
								
								Makefile
									
									
									
									
									
								
							@ -20,6 +20,17 @@ img_by_sd15_txt2img:
 | 
			
		||||
	--fix-by-controlnet-tile "True" \
 | 
			
		||||
	--output-format "avif"
 | 
			
		||||
 | 
			
		||||
img_by_sd15_img2img:
 | 
			
		||||
	cd ./sdcli && modal run sd15_img2img.py \
 | 
			
		||||
	--prompt "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k" \
 | 
			
		||||
	--n-prompt "" \
 | 
			
		||||
	--samples 1 \
 | 
			
		||||
	--steps 30 \
 | 
			
		||||
	--upscaler "RealESRGAN_x2plus" \
 | 
			
		||||
	--use-face-enhancer "False" \
 | 
			
		||||
	--fix-by-controlnet-tile "True" \
 | 
			
		||||
	--output-format "avif" \
 | 
			
		||||
	--base-image-url "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
 | 
			
		||||
 | 
			
		||||
img_by_sdxl_txt2img:
 | 
			
		||||
	cd ./sdcli && modal run sdxl_txt2img.py \
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										58
									
								
								sdcli/sd15_img2img.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										58
									
								
								sdcli/sd15_img2img.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,58 @@
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
import modal
 | 
			
		||||
import util
 | 
			
		||||
 | 
			
		||||
stub = modal.Stub("run-stable-diffusion-cli")
 | 
			
		||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15.run_img2img_inference")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.local_entrypoint()
 | 
			
		||||
def main(
 | 
			
		||||
    prompt: str,
 | 
			
		||||
    n_prompt: str,
 | 
			
		||||
    samples: int = 5,
 | 
			
		||||
    batch_size: int = 1,
 | 
			
		||||
    steps: int = 20,
 | 
			
		||||
    seed: int = -1,
 | 
			
		||||
    upscaler: str = "",
 | 
			
		||||
    use_face_enhancer: str = "False",
 | 
			
		||||
    fix_by_controlnet_tile: str = "False",
 | 
			
		||||
    output_format: str = "png",
 | 
			
		||||
    base_image_url: str = "",
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    This function is the entrypoint for the Runway CLI.
 | 
			
		||||
    The function pass the given prompt to StableDiffusion on Modal,
 | 
			
		||||
    gets back a list of images and outputs images to local.
 | 
			
		||||
    """
 | 
			
		||||
    directory = util.make_directory()
 | 
			
		||||
    seed_generated = seed
 | 
			
		||||
    for i in range(samples):
 | 
			
		||||
        if seed == -1:
 | 
			
		||||
            seed_generated = util.generate_seed()
 | 
			
		||||
        start_time = time.time()
 | 
			
		||||
        images = stub.run_inference.remote(
 | 
			
		||||
            prompt=prompt,
 | 
			
		||||
            n_prompt=n_prompt,
 | 
			
		||||
            batch_size=batch_size,
 | 
			
		||||
            steps=steps,
 | 
			
		||||
            seed=seed_generated,
 | 
			
		||||
            upscaler=upscaler,
 | 
			
		||||
            use_face_enhancer=use_face_enhancer == "True",
 | 
			
		||||
            fix_by_controlnet_tile=fix_by_controlnet_tile == "True",
 | 
			
		||||
            output_format=output_format,
 | 
			
		||||
            base_image_url=base_image_url,
 | 
			
		||||
        )
 | 
			
		||||
        util.save_images(directory, images, seed_generated, i, output_format)
 | 
			
		||||
        total_time = time.time() - start_time
 | 
			
		||||
        print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
 | 
			
		||||
 | 
			
		||||
    prompts: dict[str, int | str] = {
 | 
			
		||||
        "prompt": prompt,
 | 
			
		||||
        "n_prompt": n_prompt,
 | 
			
		||||
        "samples": samples,
 | 
			
		||||
        "batch_size": batch_size,
 | 
			
		||||
        "steps": steps,
 | 
			
		||||
    }
 | 
			
		||||
    util.save_prompts(prompts)
 | 
			
		||||
@ -4,7 +4,7 @@ import modal
 | 
			
		||||
import util
 | 
			
		||||
 | 
			
		||||
stub = modal.Stub("run-stable-diffusion-cli")
 | 
			
		||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15Txt2Img.run_inference")
 | 
			
		||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15.run_txt2img_inference")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.local_entrypoint()
 | 
			
		||||
 | 
			
		||||
@ -7,7 +7,7 @@ from setup import stub
 | 
			
		||||
 | 
			
		||||
@stub.function(gpu="A10G")
 | 
			
		||||
def main():
 | 
			
		||||
    stable_diffusion_1_5.SD15Txt2Img
 | 
			
		||||
    stable_diffusion_1_5.SD15
 | 
			
		||||
    stable_diffusion_xl.SDXLTxt2Img
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -18,9 +18,9 @@ from setup import (
 | 
			
		||||
    gpu="A10G",
 | 
			
		||||
    secrets=[Secret.from_dotenv(__file__)],
 | 
			
		||||
)
 | 
			
		||||
class SD15Txt2Img:
 | 
			
		||||
class SD15:
 | 
			
		||||
    """
 | 
			
		||||
    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
			
		||||
    SD15 is a class that runs inference using Stable Diffusion 1.5.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __enter__(self):
 | 
			
		||||
@ -50,6 +50,7 @@ class SD15Txt2Img:
 | 
			
		||||
            self.cache_path,
 | 
			
		||||
            subfolder="scheduler",
 | 
			
		||||
        )
 | 
			
		||||
        # self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
 | 
			
		||||
 | 
			
		||||
        vae = config.get("vae")
 | 
			
		||||
        if vae is not None:
 | 
			
		||||
@ -121,7 +122,7 @@ class SD15Txt2Img:
 | 
			
		||||
        return max_embeddings_multiples
 | 
			
		||||
 | 
			
		||||
    @method()
 | 
			
		||||
    def run_inference(
 | 
			
		||||
    def run_txt2img_inference(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: str,
 | 
			
		||||
        n_prompt: str,
 | 
			
		||||
@ -148,7 +149,7 @@ class SD15Txt2Img:
 | 
			
		||||
        self.pipe.enable_xformers_memory_efficient_attention()
 | 
			
		||||
        with torch.autocast("cuda"):
 | 
			
		||||
            generated_images = self.pipe(
 | 
			
		||||
                prompt * batch_size,
 | 
			
		||||
                prompt=prompt * batch_size,
 | 
			
		||||
                negative_prompt=n_prompt * batch_size,
 | 
			
		||||
                height=height,
 | 
			
		||||
                width=width,
 | 
			
		||||
@ -202,6 +203,87 @@ class SD15Txt2Img:
 | 
			
		||||
 | 
			
		||||
        return image_output
 | 
			
		||||
 | 
			
		||||
    @method()
 | 
			
		||||
    def run_img2img_inference(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: str,
 | 
			
		||||
        n_prompt: str,
 | 
			
		||||
        batch_size: int = 1,
 | 
			
		||||
        steps: int = 30,
 | 
			
		||||
        seed: int = 1,
 | 
			
		||||
        upscaler: str = "",
 | 
			
		||||
        use_face_enhancer: bool = False,
 | 
			
		||||
        fix_by_controlnet_tile: bool = False,
 | 
			
		||||
        output_format: str = "png",
 | 
			
		||||
        base_image_url: str = "",
 | 
			
		||||
    ) -> list[bytes]:
 | 
			
		||||
        """
 | 
			
		||||
        Runs the Stable Diffusion pipeline on the given prompt and outputs images.
 | 
			
		||||
        """
 | 
			
		||||
        import pillow_avif  # noqa: F401
 | 
			
		||||
        import torch
 | 
			
		||||
        from diffusers.utils import load_image
 | 
			
		||||
 | 
			
		||||
        max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
 | 
			
		||||
        generator = torch.Generator("cuda").manual_seed(seed)
 | 
			
		||||
        self.pipe.to("cuda")
 | 
			
		||||
        self.pipe.enable_vae_tiling()
 | 
			
		||||
        self.pipe.enable_xformers_memory_efficient_attention()
 | 
			
		||||
        with torch.autocast("cuda"):
 | 
			
		||||
            generated_images = self.pipe(
 | 
			
		||||
                prompt=prompt * batch_size,
 | 
			
		||||
                negative_prompt=n_prompt * batch_size,
 | 
			
		||||
                num_inference_steps=steps,
 | 
			
		||||
                guidance_scale=7.5,
 | 
			
		||||
                max_embeddings_multiples=max_embeddings_multiples,
 | 
			
		||||
                generator=generator,
 | 
			
		||||
                image=load_image(base_image_url),
 | 
			
		||||
            ).images
 | 
			
		||||
 | 
			
		||||
        base_images = generated_images
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
 | 
			
		||||
        https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
 | 
			
		||||
        """
 | 
			
		||||
        if fix_by_controlnet_tile:
 | 
			
		||||
            self.controlnet_pipe.to("cuda")
 | 
			
		||||
            self.controlnet_pipe.enable_vae_tiling()
 | 
			
		||||
            self.controlnet_pipe.enable_xformers_memory_efficient_attention()
 | 
			
		||||
            for image in base_images:
 | 
			
		||||
                image = self._resize_image(image=image, scale_factor=2)
 | 
			
		||||
                with torch.autocast("cuda"):
 | 
			
		||||
                    fixed_by_controlnet = self.controlnet_pipe(
 | 
			
		||||
                        prompt=prompt * batch_size,
 | 
			
		||||
                        negative_prompt=n_prompt * batch_size,
 | 
			
		||||
                        num_inference_steps=steps,
 | 
			
		||||
                        strength=0.3,
 | 
			
		||||
                        guidance_scale=7.5,
 | 
			
		||||
                        max_embeddings_multiples=max_embeddings_multiples,
 | 
			
		||||
                        generator=generator,
 | 
			
		||||
                        image=image,
 | 
			
		||||
                    ).images
 | 
			
		||||
            generated_images.extend(fixed_by_controlnet)
 | 
			
		||||
            base_images = fixed_by_controlnet
 | 
			
		||||
 | 
			
		||||
        if upscaler != "":
 | 
			
		||||
            upscaled = self._upscale(
 | 
			
		||||
                base_images=base_images,
 | 
			
		||||
                half_precision=False,
 | 
			
		||||
                tile=700,
 | 
			
		||||
                upscaler=upscaler,
 | 
			
		||||
                use_face_enhancer=use_face_enhancer,
 | 
			
		||||
            )
 | 
			
		||||
            generated_images.extend(upscaled)
 | 
			
		||||
 | 
			
		||||
        image_output = []
 | 
			
		||||
        for image in generated_images:
 | 
			
		||||
            with io.BytesIO() as buf:
 | 
			
		||||
                image.save(buf, format=output_format)
 | 
			
		||||
                image_output.append(buf.getvalue())
 | 
			
		||||
 | 
			
		||||
        return image_output
 | 
			
		||||
 | 
			
		||||
    def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
 | 
			
		||||
        image = image.convert("RGB")
 | 
			
		||||
        width, height = image.size
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user