Refactor to deploy modal app.
This commit is contained in:
parent
643e0e2ea6
commit
364cb78992
13
Makefile
13
Makefile
@ -1,8 +1,11 @@
|
|||||||
|
deploy:
|
||||||
|
modal deploy sdcli.py
|
||||||
|
|
||||||
run:
|
run:
|
||||||
modal run sd_cli.py \
|
modal run entrypoint.py \
|
||||||
--prompt "A woman with bob hair" \
|
--prompt "a photograph of an astronaut riding a horse" \
|
||||||
--n-prompt "" \
|
--n-prompt "" \
|
||||||
--height 768 \
|
--height 512 \
|
||||||
--width 512 \
|
--width 512 \
|
||||||
--samples 5 \
|
--samples 1 \
|
||||||
--steps 30
|
--steps 50
|
||||||
|
|||||||
@ -31,7 +31,8 @@ To use the script, execute the below.
|
|||||||
1. git clone the repository.
|
1. git clone the repository.
|
||||||
2. Create the `.env` file and set a huggingface API token and a model with reference to `.env.example`.
|
2. Create the `.env` file and set a huggingface API token and a model with reference to `.env.example`.
|
||||||
3. Open the Makefile and set prompts.
|
3. Open the Makefile and set prompts.
|
||||||
4. Execute `make run` command.
|
4. Execute `make deploy` command. An application will be deployed to Modal by the command.
|
||||||
|
5. Execute `make run` command.
|
||||||
|
|
||||||
Images are generated and output to the `outputs/` directory.
|
Images are generated and output to the `outputs/` directory.
|
||||||
|
|
||||||
|
|||||||
56
entrypoint.py
Normal file
56
entrypoint.py
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
import time
|
||||||
|
|
||||||
|
import modal
|
||||||
|
|
||||||
|
stub = modal.Stub("run-stable-diffusion-cli")
|
||||||
|
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "StableDiffusion.run_inference")
|
||||||
|
|
||||||
|
|
||||||
|
@stub.local_entrypoint()
|
||||||
|
def main(
|
||||||
|
prompt: str,
|
||||||
|
n_prompt: str,
|
||||||
|
height: int = 512,
|
||||||
|
width: int = 512,
|
||||||
|
samples: int = 5,
|
||||||
|
batch_size: int = 1,
|
||||||
|
steps: int = 20,
|
||||||
|
seed: int = -1,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
This function is the entrypoint for the Runway CLI.
|
||||||
|
The function pass the given prompt to StableDiffusion on Modal,
|
||||||
|
gets back a list of images and outputs images to local.
|
||||||
|
"""
|
||||||
|
import util
|
||||||
|
|
||||||
|
directory = util.make_directory()
|
||||||
|
seed_generated = seed
|
||||||
|
for i in range(samples):
|
||||||
|
if seed == -1:
|
||||||
|
seed_generated = util.generate_seed()
|
||||||
|
start_time = time.time()
|
||||||
|
# images = sd.run_inference(seed=seed_generated)
|
||||||
|
images = stub.app.run_inference.call(
|
||||||
|
prompt=prompt,
|
||||||
|
n_prompt=n_prompt,
|
||||||
|
height=height,
|
||||||
|
width=width,
|
||||||
|
batch_size=batch_size,
|
||||||
|
steps=steps,
|
||||||
|
seed=seed_generated,
|
||||||
|
)
|
||||||
|
util.save_images(directory, images, seed_generated, i)
|
||||||
|
total_time = time.time() - start_time
|
||||||
|
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|
||||||
|
|
||||||
|
prompts: dict[str, int | str] = {
|
||||||
|
"prompt": prompt,
|
||||||
|
"n_prompt": n_prompt,
|
||||||
|
"height": height,
|
||||||
|
"width": width,
|
||||||
|
"samples": samples,
|
||||||
|
"batch_size": batch_size,
|
||||||
|
"steps": steps,
|
||||||
|
}
|
||||||
|
util.save_prompts(prompts)
|
||||||
@ -2,7 +2,6 @@ from __future__ import annotations
|
|||||||
|
|
||||||
import io
|
import io
|
||||||
import os
|
import os
|
||||||
import time
|
|
||||||
from urllib.request import Request, urlopen
|
from urllib.request import Request, urlopen
|
||||||
|
|
||||||
from modal import Image, Mount, Secret, Stub, method
|
from modal import Image, Mount, Secret, Stub, method
|
||||||
@ -94,38 +93,20 @@ class StableDiffusion(ClsMixin):
|
|||||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __enter__(self):
|
||||||
self,
|
|
||||||
prompt: str,
|
|
||||||
n_prompt: str,
|
|
||||||
height: int = 512,
|
|
||||||
width: int = 512,
|
|
||||||
samples: int = 1,
|
|
||||||
batch_size: int = 1,
|
|
||||||
steps: int = 30,
|
|
||||||
):
|
|
||||||
import diffusers
|
import diffusers
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
self.prompt = prompt
|
|
||||||
self.n_prompt = n_prompt
|
|
||||||
self.height = height
|
|
||||||
self.width = width
|
|
||||||
self.samples = samples
|
|
||||||
self.batch_size = batch_size
|
|
||||||
self.steps = steps
|
|
||||||
self.use_vae = os.environ["USE_VAE"] == "true"
|
self.use_vae = os.environ["USE_VAE"] == "true"
|
||||||
self.upscaler = os.environ["UPSCALER"]
|
self.upscaler = os.environ["UPSCALER"]
|
||||||
self.use_face_enhancer = os.environ["USE_FACE_ENHANCER"] == "true"
|
self.use_face_enhancer = os.environ["USE_FACE_ENHANCER"] == "true"
|
||||||
self.use_hires_fix = os.environ["USE_HIRES_FIX"] == "true"
|
self.use_hires_fix = os.environ["USE_HIRES_FIX"] == "true"
|
||||||
|
|
||||||
self.cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
|
self.cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
|
||||||
if os.path.exists(self.cache_path):
|
if os.path.exists(self.cache_path):
|
||||||
print(f"The directory '{self.cache_path}' exists.")
|
print(f"The directory '{self.cache_path}' exists.")
|
||||||
else:
|
else:
|
||||||
print(f"The directory '{self.cache_path}' does not exist. Download models...")
|
print(f"The directory '{self.cache_path}' does not exist. Download models...")
|
||||||
download_models()
|
download_models()
|
||||||
self.max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
|
|
||||||
|
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
|
|
||||||
@ -203,23 +184,34 @@ class StableDiffusion(ClsMixin):
|
|||||||
return max_embeddings_multiples
|
return max_embeddings_multiples
|
||||||
|
|
||||||
@method()
|
@method()
|
||||||
def run_inference(self, seed: int) -> list[bytes]:
|
def run_inference(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
n_prompt: str,
|
||||||
|
height: int = 512,
|
||||||
|
width: int = 512,
|
||||||
|
samples: int = 1,
|
||||||
|
batch_size: int = 1,
|
||||||
|
steps: int = 30,
|
||||||
|
seed: int = 1,
|
||||||
|
) -> list[bytes]:
|
||||||
"""
|
"""
|
||||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||||
"""
|
"""
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
|
||||||
generator = torch.Generator("cuda").manual_seed(seed)
|
generator = torch.Generator("cuda").manual_seed(seed)
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
with torch.autocast("cuda"):
|
with torch.autocast("cuda"):
|
||||||
base_images = self.pipe.text2img(
|
base_images = self.pipe.text2img(
|
||||||
self.prompt * self.batch_size,
|
prompt * batch_size,
|
||||||
negative_prompt=self.n_prompt * self.batch_size,
|
negative_prompt=n_prompt * batch_size,
|
||||||
height=self.height,
|
height=height,
|
||||||
width=self.width,
|
width=width,
|
||||||
num_inference_steps=self.steps,
|
num_inference_steps=steps,
|
||||||
guidance_scale=7.5,
|
guidance_scale=7.5,
|
||||||
max_embeddings_multiples=self.max_embeddings_multiples,
|
max_embeddings_multiples=max_embeddings_multiples,
|
||||||
generator=generator,
|
generator=generator,
|
||||||
).images
|
).images
|
||||||
|
|
||||||
@ -236,12 +228,12 @@ class StableDiffusion(ClsMixin):
|
|||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
with torch.autocast("cuda"):
|
with torch.autocast("cuda"):
|
||||||
hires_fixed = self.pipe.img2img(
|
hires_fixed = self.pipe.img2img(
|
||||||
prompt=self.prompt * self.batch_size,
|
prompt=prompt * batch_size,
|
||||||
negative_prompt=self.n_prompt * self.batch_size,
|
negative_prompt=n_prompt * batch_size,
|
||||||
num_inference_steps=self.steps,
|
num_inference_steps=steps,
|
||||||
strength=0.3,
|
strength=0.3,
|
||||||
guidance_scale=7.5,
|
guidance_scale=7.5,
|
||||||
max_embeddings_multiples=self.max_embeddings_multiples,
|
max_embeddings_multiples=max_embeddings_multiples,
|
||||||
generator=generator,
|
generator=generator,
|
||||||
image=img,
|
image=img,
|
||||||
).images
|
).images
|
||||||
@ -336,84 +328,3 @@ class StableDiffusion(ClsMixin):
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
return upscaled_imgs
|
return upscaled_imgs
|
||||||
|
|
||||||
# TODO: Implement this
|
|
||||||
# @method()
|
|
||||||
# def img2img(
|
|
||||||
# self,
|
|
||||||
# prompt: str,
|
|
||||||
# n_prompt: str,
|
|
||||||
# batch_size: int = 1,
|
|
||||||
# steps: int = 20,
|
|
||||||
# strength: float = 0.3,
|
|
||||||
# max_embeddings_multiples: int = 1,
|
|
||||||
# # image: Image.Image = None,
|
|
||||||
# base_images: list[Image.Image],
|
|
||||||
# ):
|
|
||||||
# import torch
|
|
||||||
|
|
||||||
# torch.cuda.empty_cache()
|
|
||||||
# for img in base_images:
|
|
||||||
# with torch.inference_mode():
|
|
||||||
# with torch.autocast("cuda"):
|
|
||||||
# hires_fixed = self.pipe.img2img(
|
|
||||||
# prompt=prompt * batch_size,
|
|
||||||
# negative_prompt=n_prompt * batch_size,
|
|
||||||
# num_inference_steps=steps],
|
|
||||||
# strength=strength,
|
|
||||||
# guidance_scale=7.5,
|
|
||||||
# max_embeddings_multiples=max_embeddings_multiples,
|
|
||||||
# generator=generator,
|
|
||||||
# image=img,
|
|
||||||
# ).images
|
|
||||||
# base_images.extend(hires_fixed)
|
|
||||||
# torch.cuda.empty_cache()
|
|
||||||
|
|
||||||
|
|
||||||
@stub.local_entrypoint()
|
|
||||||
def entrypoint(
|
|
||||||
prompt: str,
|
|
||||||
n_prompt: str,
|
|
||||||
height: int = 512,
|
|
||||||
width: int = 512,
|
|
||||||
samples: int = 5,
|
|
||||||
batch_size: int = 1,
|
|
||||||
steps: int = 20,
|
|
||||||
seed: int = -1,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
This function is the entrypoint for the Runway CLI.
|
|
||||||
The function pass the given prompt to StableDiffusion on Modal,
|
|
||||||
gets back a list of images and outputs images to local.
|
|
||||||
"""
|
|
||||||
import util
|
|
||||||
|
|
||||||
directory = util.make_directory()
|
|
||||||
|
|
||||||
sd = StableDiffusion.remote(
|
|
||||||
prompt=prompt,
|
|
||||||
n_prompt=n_prompt,
|
|
||||||
height=height,
|
|
||||||
width=width,
|
|
||||||
batch_size=batch_size,
|
|
||||||
steps=steps,
|
|
||||||
)
|
|
||||||
for i in range(samples):
|
|
||||||
if seed == -1:
|
|
||||||
seed_generated = util.generate_seed()
|
|
||||||
start_time = time.time()
|
|
||||||
images = sd.run_inference(seed=seed_generated)
|
|
||||||
util.save_images(directory, images, seed_generated, i)
|
|
||||||
total_time = time.time() - start_time
|
|
||||||
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|
|
||||||
|
|
||||||
prompts: dict[str, int | str] = {
|
|
||||||
"prompt": prompt,
|
|
||||||
"n_prompt": n_prompt,
|
|
||||||
"height": height,
|
|
||||||
"width": width,
|
|
||||||
"samples": samples,
|
|
||||||
"batch_size": batch_size,
|
|
||||||
"steps": steps,
|
|
||||||
}
|
|
||||||
util.save_prompts(prompts)
|
|
||||||
Loading…
x
Reference in New Issue
Block a user