Refactor to deploy modal app.
This commit is contained in:
		
							parent
							
								
									643e0e2ea6
								
							
						
					
					
						commit
						364cb78992
					
				
							
								
								
									
										13
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										13
									
								
								Makefile
									
									
									
									
									
								
							@ -1,8 +1,11 @@
 | 
			
		||||
deploy:
 | 
			
		||||
	modal deploy sdcli.py
 | 
			
		||||
 | 
			
		||||
run:
 | 
			
		||||
	modal run sd_cli.py \
 | 
			
		||||
	--prompt "A woman with bob hair" \
 | 
			
		||||
	modal run entrypoint.py \
 | 
			
		||||
	--prompt "a photograph of an astronaut riding a horse" \
 | 
			
		||||
	--n-prompt "" \
 | 
			
		||||
	--height 768 \
 | 
			
		||||
	--height 512 \
 | 
			
		||||
	--width 512 \
 | 
			
		||||
	--samples 5 \
 | 
			
		||||
	--steps 30
 | 
			
		||||
	--samples 1 \
 | 
			
		||||
	--steps 50
 | 
			
		||||
 | 
			
		||||
@ -31,7 +31,8 @@ To use the script, execute the below.
 | 
			
		||||
1. git clone the repository.
 | 
			
		||||
2. Create the `.env` file and set a huggingface API token and a model with reference to `.env.example`.
 | 
			
		||||
3. Open the Makefile and set prompts.
 | 
			
		||||
4. Execute `make run` command.
 | 
			
		||||
4. Execute `make deploy` command. An application will be deployed to Modal by the command.
 | 
			
		||||
5. Execute `make run` command.
 | 
			
		||||
 | 
			
		||||
Images are generated and output to the `outputs/` directory.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										56
									
								
								entrypoint.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										56
									
								
								entrypoint.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,56 @@
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
import modal
 | 
			
		||||
 | 
			
		||||
stub = modal.Stub("run-stable-diffusion-cli")
 | 
			
		||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "StableDiffusion.run_inference")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.local_entrypoint()
 | 
			
		||||
def main(
 | 
			
		||||
    prompt: str,
 | 
			
		||||
    n_prompt: str,
 | 
			
		||||
    height: int = 512,
 | 
			
		||||
    width: int = 512,
 | 
			
		||||
    samples: int = 5,
 | 
			
		||||
    batch_size: int = 1,
 | 
			
		||||
    steps: int = 20,
 | 
			
		||||
    seed: int = -1,
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    This function is the entrypoint for the Runway CLI.
 | 
			
		||||
    The function pass the given prompt to StableDiffusion on Modal,
 | 
			
		||||
    gets back a list of images and outputs images to local.
 | 
			
		||||
    """
 | 
			
		||||
    import util
 | 
			
		||||
 | 
			
		||||
    directory = util.make_directory()
 | 
			
		||||
    seed_generated = seed
 | 
			
		||||
    for i in range(samples):
 | 
			
		||||
        if seed == -1:
 | 
			
		||||
            seed_generated = util.generate_seed()
 | 
			
		||||
        start_time = time.time()
 | 
			
		||||
        # images = sd.run_inference(seed=seed_generated)
 | 
			
		||||
        images = stub.app.run_inference.call(
 | 
			
		||||
            prompt=prompt,
 | 
			
		||||
            n_prompt=n_prompt,
 | 
			
		||||
            height=height,
 | 
			
		||||
            width=width,
 | 
			
		||||
            batch_size=batch_size,
 | 
			
		||||
            steps=steps,
 | 
			
		||||
            seed=seed_generated,
 | 
			
		||||
        )
 | 
			
		||||
        util.save_images(directory, images, seed_generated, i)
 | 
			
		||||
        total_time = time.time() - start_time
 | 
			
		||||
        print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
 | 
			
		||||
 | 
			
		||||
    prompts: dict[str, int | str] = {
 | 
			
		||||
        "prompt": prompt,
 | 
			
		||||
        "n_prompt": n_prompt,
 | 
			
		||||
        "height": height,
 | 
			
		||||
        "width": width,
 | 
			
		||||
        "samples": samples,
 | 
			
		||||
        "batch_size": batch_size,
 | 
			
		||||
        "steps": steps,
 | 
			
		||||
    }
 | 
			
		||||
    util.save_prompts(prompts)
 | 
			
		||||
@ -2,7 +2,6 @@ from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
import io
 | 
			
		||||
import os
 | 
			
		||||
import time
 | 
			
		||||
from urllib.request import Request, urlopen
 | 
			
		||||
 | 
			
		||||
from modal import Image, Mount, Secret, Stub, method
 | 
			
		||||
@ -94,38 +93,20 @@ class StableDiffusion(ClsMixin):
 | 
			
		||||
    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: str,
 | 
			
		||||
        n_prompt: str,
 | 
			
		||||
        height: int = 512,
 | 
			
		||||
        width: int = 512,
 | 
			
		||||
        samples: int = 1,
 | 
			
		||||
        batch_size: int = 1,
 | 
			
		||||
        steps: int = 30,
 | 
			
		||||
    ):
 | 
			
		||||
    def __enter__(self):
 | 
			
		||||
        import diffusers
 | 
			
		||||
        import torch
 | 
			
		||||
 | 
			
		||||
        self.prompt = prompt
 | 
			
		||||
        self.n_prompt = n_prompt
 | 
			
		||||
        self.height = height
 | 
			
		||||
        self.width = width
 | 
			
		||||
        self.samples = samples
 | 
			
		||||
        self.batch_size = batch_size
 | 
			
		||||
        self.steps = steps
 | 
			
		||||
        self.use_vae = os.environ["USE_VAE"] == "true"
 | 
			
		||||
        self.upscaler = os.environ["UPSCALER"]
 | 
			
		||||
        self.use_face_enhancer = os.environ["USE_FACE_ENHANCER"] == "true"
 | 
			
		||||
        self.use_hires_fix = os.environ["USE_HIRES_FIX"] == "true"
 | 
			
		||||
 | 
			
		||||
        self.cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
 | 
			
		||||
        if os.path.exists(self.cache_path):
 | 
			
		||||
            print(f"The directory '{self.cache_path}' exists.")
 | 
			
		||||
        else:
 | 
			
		||||
            print(f"The directory '{self.cache_path}' does not exist. Download models...")
 | 
			
		||||
            download_models()
 | 
			
		||||
        self.max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
 | 
			
		||||
 | 
			
		||||
        torch.backends.cuda.matmul.allow_tf32 = True
 | 
			
		||||
 | 
			
		||||
@ -203,23 +184,34 @@ class StableDiffusion(ClsMixin):
 | 
			
		||||
        return max_embeddings_multiples
 | 
			
		||||
 | 
			
		||||
    @method()
 | 
			
		||||
    def run_inference(self, seed: int) -> list[bytes]:
 | 
			
		||||
    def run_inference(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: str,
 | 
			
		||||
        n_prompt: str,
 | 
			
		||||
        height: int = 512,
 | 
			
		||||
        width: int = 512,
 | 
			
		||||
        samples: int = 1,
 | 
			
		||||
        batch_size: int = 1,
 | 
			
		||||
        steps: int = 30,
 | 
			
		||||
        seed: int = 1,
 | 
			
		||||
    ) -> list[bytes]:
 | 
			
		||||
        """
 | 
			
		||||
        Runs the Stable Diffusion pipeline on the given prompt and outputs images.
 | 
			
		||||
        """
 | 
			
		||||
        import torch
 | 
			
		||||
 | 
			
		||||
        max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
 | 
			
		||||
        generator = torch.Generator("cuda").manual_seed(seed)
 | 
			
		||||
        with torch.inference_mode():
 | 
			
		||||
            with torch.autocast("cuda"):
 | 
			
		||||
                base_images = self.pipe.text2img(
 | 
			
		||||
                    self.prompt * self.batch_size,
 | 
			
		||||
                    negative_prompt=self.n_prompt * self.batch_size,
 | 
			
		||||
                    height=self.height,
 | 
			
		||||
                    width=self.width,
 | 
			
		||||
                    num_inference_steps=self.steps,
 | 
			
		||||
                    prompt * batch_size,
 | 
			
		||||
                    negative_prompt=n_prompt * batch_size,
 | 
			
		||||
                    height=height,
 | 
			
		||||
                    width=width,
 | 
			
		||||
                    num_inference_steps=steps,
 | 
			
		||||
                    guidance_scale=7.5,
 | 
			
		||||
                    max_embeddings_multiples=self.max_embeddings_multiples,
 | 
			
		||||
                    max_embeddings_multiples=max_embeddings_multiples,
 | 
			
		||||
                    generator=generator,
 | 
			
		||||
                ).images
 | 
			
		||||
 | 
			
		||||
@ -236,12 +228,12 @@ class StableDiffusion(ClsMixin):
 | 
			
		||||
                    with torch.inference_mode():
 | 
			
		||||
                        with torch.autocast("cuda"):
 | 
			
		||||
                            hires_fixed = self.pipe.img2img(
 | 
			
		||||
                                prompt=self.prompt * self.batch_size,
 | 
			
		||||
                                negative_prompt=self.n_prompt * self.batch_size,
 | 
			
		||||
                                num_inference_steps=self.steps,
 | 
			
		||||
                                prompt=prompt * batch_size,
 | 
			
		||||
                                negative_prompt=n_prompt * batch_size,
 | 
			
		||||
                                num_inference_steps=steps,
 | 
			
		||||
                                strength=0.3,
 | 
			
		||||
                                guidance_scale=7.5,
 | 
			
		||||
                                max_embeddings_multiples=self.max_embeddings_multiples,
 | 
			
		||||
                                max_embeddings_multiples=max_embeddings_multiples,
 | 
			
		||||
                                generator=generator,
 | 
			
		||||
                                image=img,
 | 
			
		||||
                            ).images
 | 
			
		||||
@ -336,84 +328,3 @@ class StableDiffusion(ClsMixin):
 | 
			
		||||
        torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
        return upscaled_imgs
 | 
			
		||||
 | 
			
		||||
    # TODO: Implement this
 | 
			
		||||
    # @method()
 | 
			
		||||
    # def img2img(
 | 
			
		||||
    #     self,
 | 
			
		||||
    #     prompt: str,
 | 
			
		||||
    #     n_prompt: str,
 | 
			
		||||
    #     batch_size: int = 1,
 | 
			
		||||
    #     steps: int = 20,
 | 
			
		||||
    #     strength: float = 0.3,
 | 
			
		||||
    #     max_embeddings_multiples: int = 1,
 | 
			
		||||
    #     # image: Image.Image = None,
 | 
			
		||||
    #     base_images: list[Image.Image],
 | 
			
		||||
    # ):
 | 
			
		||||
    #     import torch
 | 
			
		||||
 | 
			
		||||
    #     torch.cuda.empty_cache()
 | 
			
		||||
    #     for img in base_images:
 | 
			
		||||
    #         with torch.inference_mode():
 | 
			
		||||
    #             with torch.autocast("cuda"):
 | 
			
		||||
    #                 hires_fixed = self.pipe.img2img(
 | 
			
		||||
    #                     prompt=prompt * batch_size,
 | 
			
		||||
    #                     negative_prompt=n_prompt * batch_size,
 | 
			
		||||
    #                     num_inference_steps=steps],
 | 
			
		||||
    #                     strength=strength,
 | 
			
		||||
    #                     guidance_scale=7.5,
 | 
			
		||||
    #                     max_embeddings_multiples=max_embeddings_multiples,
 | 
			
		||||
    #                     generator=generator,
 | 
			
		||||
    #                     image=img,
 | 
			
		||||
    #                 ).images
 | 
			
		||||
    #         base_images.extend(hires_fixed)
 | 
			
		||||
    #     torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.local_entrypoint()
 | 
			
		||||
def entrypoint(
 | 
			
		||||
    prompt: str,
 | 
			
		||||
    n_prompt: str,
 | 
			
		||||
    height: int = 512,
 | 
			
		||||
    width: int = 512,
 | 
			
		||||
    samples: int = 5,
 | 
			
		||||
    batch_size: int = 1,
 | 
			
		||||
    steps: int = 20,
 | 
			
		||||
    seed: int = -1,
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    This function is the entrypoint for the Runway CLI.
 | 
			
		||||
    The function pass the given prompt to StableDiffusion on Modal,
 | 
			
		||||
    gets back a list of images and outputs images to local.
 | 
			
		||||
    """
 | 
			
		||||
    import util
 | 
			
		||||
 | 
			
		||||
    directory = util.make_directory()
 | 
			
		||||
 | 
			
		||||
    sd = StableDiffusion.remote(
 | 
			
		||||
        prompt=prompt,
 | 
			
		||||
        n_prompt=n_prompt,
 | 
			
		||||
        height=height,
 | 
			
		||||
        width=width,
 | 
			
		||||
        batch_size=batch_size,
 | 
			
		||||
        steps=steps,
 | 
			
		||||
    )
 | 
			
		||||
    for i in range(samples):
 | 
			
		||||
        if seed == -1:
 | 
			
		||||
            seed_generated = util.generate_seed()
 | 
			
		||||
        start_time = time.time()
 | 
			
		||||
        images = sd.run_inference(seed=seed_generated)
 | 
			
		||||
        util.save_images(directory, images, seed_generated, i)
 | 
			
		||||
        total_time = time.time() - start_time
 | 
			
		||||
        print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
 | 
			
		||||
 | 
			
		||||
    prompts: dict[str, int | str] = {
 | 
			
		||||
        "prompt": prompt,
 | 
			
		||||
        "n_prompt": n_prompt,
 | 
			
		||||
        "height": height,
 | 
			
		||||
        "width": width,
 | 
			
		||||
        "samples": samples,
 | 
			
		||||
        "batch_size": batch_size,
 | 
			
		||||
        "steps": steps,
 | 
			
		||||
    }
 | 
			
		||||
    util.save_prompts(prompts)
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user