Refactor some codes. Add sd_x2_latent_upscaler.
This commit is contained in:
parent
653403d29a
commit
3830bded6a
@ -1,3 +1,3 @@
|
||||
HUGGINGFACE_TOKEN=""
|
||||
HUGGING_FACE_TOKEN=""
|
||||
MODEL_REPO_ID="stabilityai/stable-diffusion-2-1"
|
||||
MODEL_NAME="stable-diffusion-2-1"
|
||||
|
||||
119
sd_cli.py
119
sd_cli.py
@ -1,12 +1,12 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import io
|
||||
import os
|
||||
import time
|
||||
from datetime import date
|
||||
from pathlib import Path
|
||||
from modal import Image, Secret, Stub, method, Mount
|
||||
|
||||
stub = Stub("stable-diffusion-cli")
|
||||
from modal import Image, Mount, Secret, Stub, method
|
||||
|
||||
import util
|
||||
|
||||
BASE_CACHE_PATH = "/vol/cache"
|
||||
|
||||
@ -18,7 +18,7 @@ def download_models():
|
||||
"""
|
||||
import diffusers
|
||||
|
||||
hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
|
||||
hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
|
||||
model_repo_id = os.environ["MODEL_REPO_ID"]
|
||||
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
|
||||
|
||||
@ -45,6 +45,7 @@ stub_image = Image.from_dockerfile(
|
||||
download_models,
|
||||
secrets=[Secret.from_dotenv(__file__)],
|
||||
)
|
||||
stub = Stub("stable-diffusion-cli")
|
||||
stub.image = stub_image
|
||||
|
||||
|
||||
@ -79,17 +80,19 @@ class StableDiffusion:
|
||||
).to("cuda")
|
||||
self.pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
|
||||
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
|
||||
).to("cuda")
|
||||
self.upscaler.enable_xformers_memory_efficient_attention()
|
||||
|
||||
# model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
||||
# self.upscaler = diffusers.StableDiffusionUpscalePipeline.from_pretrained(
|
||||
# , revision="fp16", torch_dtype=torch.float16
|
||||
# ).to("cuda")
|
||||
# self.upscaler.enable_xformers_memory_efficient_attention()
|
||||
|
||||
@method()
|
||||
def run_inference(
|
||||
self,
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
steps: int = 30,
|
||||
batch_size: int = 1,
|
||||
height: int = 512,
|
||||
width: int = 512,
|
||||
max_embeddings_multiples: int = 1,
|
||||
) -> list[bytes]:
|
||||
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
|
||||
"""
|
||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||
"""
|
||||
@ -98,13 +101,13 @@ class StableDiffusion:
|
||||
with torch.inference_mode():
|
||||
with torch.autocast("cuda"):
|
||||
images = self.pipe(
|
||||
[prompt] * batch_size,
|
||||
negative_prompt=[n_prompt] * batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=steps,
|
||||
[inputs["prompt"]] * int(inputs["batch_size"]),
|
||||
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
|
||||
height=inputs["height"],
|
||||
width=inputs["width"],
|
||||
num_inference_steps=inputs["steps"],
|
||||
guidance_scale=7.5,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
max_embeddings_multiples=inputs["max_embeddings_multiples"],
|
||||
).images
|
||||
|
||||
image_output = []
|
||||
@ -112,6 +115,19 @@ class StableDiffusion:
|
||||
with io.BytesIO() as buf:
|
||||
image.save(buf, format="PNG")
|
||||
image_output.append(buf.getvalue())
|
||||
|
||||
if inputs["upscaler"] != "":
|
||||
upscaled_images = self.upscaler(
|
||||
prompt=inputs["prompt"],
|
||||
image=images,
|
||||
num_inference_steps=inputs["steps"],
|
||||
guidance_scale=0,
|
||||
).images
|
||||
for image in upscaled_images:
|
||||
with io.BytesIO() as buf:
|
||||
image.save(buf, format="PNG")
|
||||
image_output.append(buf.getvalue())
|
||||
|
||||
return image_output
|
||||
|
||||
|
||||
@ -119,60 +135,45 @@ class StableDiffusion:
|
||||
def entrypoint(
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
samples: int = 5,
|
||||
steps: int = 30,
|
||||
batch_size: int = 1,
|
||||
height: int = 512,
|
||||
width: int = 512,
|
||||
samples: int = 5,
|
||||
batch_size: int = 1,
|
||||
steps: int = 20,
|
||||
upscaler: str = "",
|
||||
):
|
||||
"""
|
||||
This function is the entrypoint for the Runway CLI.
|
||||
The function pass the given prompt to StableDiffusion on Modal,
|
||||
gets back a list of images and outputs images to local.
|
||||
|
||||
The function is called with the following arguments:
|
||||
- prompt: the prompt to run inference on
|
||||
- n_prompt: the negative prompt to run inference on
|
||||
- samples: the number of samples to generate
|
||||
- steps: the number of steps to run inference for
|
||||
- batch_size: the batch size to use
|
||||
- height: the height of the output image
|
||||
- width: the width of the output image
|
||||
"""
|
||||
print(f"steps => {steps}, sapmles => {samples}, batch_size => {batch_size}")
|
||||
|
||||
max_embeddings_multiples = 1
|
||||
token_count = len(prompt.split())
|
||||
if token_count > 77:
|
||||
max_embeddings_multiples = token_count // 77 + 1
|
||||
inputs: dict[str, int | str] = {
|
||||
"prompt": prompt,
|
||||
"n_prompt": n_prompt,
|
||||
"height": height,
|
||||
"width": width,
|
||||
"samples": samples,
|
||||
"batch_size": batch_size,
|
||||
"steps": steps,
|
||||
"upscaler": upscaler, # sd_x2_latent_upscaler, sd_x4_upscaler
|
||||
# seed=-1
|
||||
}
|
||||
|
||||
print(
|
||||
f"token_count => {token_count}, max_embeddings_multiples => {max_embeddings_multiples}"
|
||||
)
|
||||
inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
|
||||
directory = util.make_directory()
|
||||
util.save_prompts(inputs)
|
||||
|
||||
directory = Path(f"./outputs/{date.today().strftime('%Y-%m-%d')}")
|
||||
if not directory.exists():
|
||||
directory.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
stable_diffusion = StableDiffusion()
|
||||
sd = StableDiffusion()
|
||||
for i in range(samples):
|
||||
start_time = time.time()
|
||||
images = stable_diffusion.run_inference.call(
|
||||
prompt,
|
||||
n_prompt,
|
||||
steps,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
max_embeddings_multiples,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
print(
|
||||
f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image)."
|
||||
)
|
||||
images = sd.run_inference.call(inputs)
|
||||
for j, image_bytes in enumerate(images):
|
||||
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
|
||||
output_path = directory / f"{formatted_time}_{i}_{j}.png"
|
||||
print(f"Saving it to {output_path}")
|
||||
with open(output_path, "wb") as file:
|
||||
file.write(image_bytes)
|
||||
|
||||
total_time = time.time() - start_time
|
||||
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|
||||
|
||||
54
util.py
Normal file
54
util.py
Normal file
@ -0,0 +1,54 @@
|
||||
""" Utility functions for the script. """
|
||||
import time
|
||||
from datetime import date
|
||||
from pathlib import Path
|
||||
|
||||
from PIL import Image
|
||||
|
||||
OUTPUT_DIRECTORY = "outputs"
|
||||
DATE_TODAY = date.today().strftime("%Y-%m-%d")
|
||||
|
||||
|
||||
def make_directory() -> Path:
|
||||
"""
|
||||
Make a directory for saving outputs.
|
||||
"""
|
||||
directory = Path(f"{OUTPUT_DIRECTORY}/{DATE_TODAY}")
|
||||
if not directory.exists():
|
||||
directory.mkdir(exist_ok=True, parents=True)
|
||||
print(f"Make directory: {directory}")
|
||||
|
||||
return directory
|
||||
|
||||
|
||||
def save_prompts(inputs: dict):
|
||||
"""
|
||||
Save prompts to a file.
|
||||
"""
|
||||
prompts_filename = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
|
||||
with open(
|
||||
file=f"{OUTPUT_DIRECTORY}/{DATE_TODAY}/prompts_{prompts_filename}.txt", mode="w", encoding="utf-8"
|
||||
) as file:
|
||||
for name, value in inputs.items():
|
||||
file.write(f"{name} = {repr(value)}\n")
|
||||
print(f"Save prompts: {prompts_filename}.txt")
|
||||
|
||||
|
||||
def count_token(p: str, n: str) -> int:
|
||||
"""
|
||||
Count the number of tokens in the prompt and negative prompt.
|
||||
"""
|
||||
token_count_p = len(p.split())
|
||||
token_count_n = len(n.split())
|
||||
if token_count_p >= token_count_n:
|
||||
token_count = token_count_p
|
||||
else:
|
||||
token_count = token_count_n
|
||||
|
||||
max_embeddings_multiples = 1
|
||||
if token_count > 77:
|
||||
max_embeddings_multiples = token_count // 77 + 1
|
||||
|
||||
print(f"token_count: {token_count}, max_embeddings_multiples: {max_embeddings_multiples}")
|
||||
|
||||
return max_embeddings_multiples
|
||||
Loading…
x
Reference in New Issue
Block a user