180 lines
5.7 KiB
Python
180 lines
5.7 KiB
Python
from __future__ import annotations
|
|
|
|
import io
|
|
import os
|
|
import time
|
|
|
|
from modal import Image, Mount, Secret, Stub, method
|
|
|
|
import util
|
|
|
|
BASE_CACHE_PATH = "/vol/cache"
|
|
|
|
|
|
def download_models():
|
|
"""
|
|
Downloads the model from Hugging Face and saves it to the cache path using
|
|
diffusers.StableDiffusionPipeline.from_pretrained().
|
|
"""
|
|
import diffusers
|
|
|
|
hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
|
|
model_repo_id = os.environ["MODEL_REPO_ID"]
|
|
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
|
|
|
|
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
|
model_repo_id,
|
|
subfolder="scheduler",
|
|
use_auth_token=hugging_face_token,
|
|
cache_dir=cache_path,
|
|
)
|
|
scheduler.save_pretrained(cache_path, safe_serialization=True)
|
|
|
|
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
|
model_repo_id,
|
|
use_auth_token=hugging_face_token,
|
|
cache_dir=cache_path,
|
|
)
|
|
pipe.save_pretrained(cache_path, safe_serialization=True)
|
|
|
|
|
|
stub_image = Image.from_dockerfile(
|
|
path="./Dockerfile",
|
|
context_mount=Mount.from_local_file("./requirements.txt"),
|
|
).run_function(
|
|
download_models,
|
|
secrets=[Secret.from_dotenv(__file__)],
|
|
)
|
|
stub = Stub("stable-diffusion-cli")
|
|
stub.image = stub_image
|
|
|
|
|
|
@stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)])
|
|
class StableDiffusion:
|
|
"""
|
|
A class that wraps the Stable Diffusion pipeline and scheduler.
|
|
"""
|
|
|
|
def __enter__(self):
|
|
import diffusers
|
|
import torch
|
|
|
|
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
|
|
if os.path.exists(cache_path):
|
|
print(f"The directory '{cache_path}' exists.")
|
|
else:
|
|
print(f"The directory '{cache_path}' does not exist. Download models...")
|
|
download_models()
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
|
cache_path,
|
|
subfolder="scheduler",
|
|
)
|
|
|
|
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
|
cache_path,
|
|
scheduler=scheduler,
|
|
custom_pipeline="lpw_stable_diffusion",
|
|
).to("cuda")
|
|
self.pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
|
|
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
|
|
).to("cuda")
|
|
self.upscaler.enable_xformers_memory_efficient_attention()
|
|
|
|
# model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
|
# self.upscaler = diffusers.StableDiffusionUpscalePipeline.from_pretrained(
|
|
# , revision="fp16", torch_dtype=torch.float16
|
|
# ).to("cuda")
|
|
# self.upscaler.enable_xformers_memory_efficient_attention()
|
|
|
|
@method()
|
|
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
|
|
"""
|
|
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
|
"""
|
|
import torch
|
|
|
|
with torch.inference_mode():
|
|
with torch.autocast("cuda"):
|
|
images = self.pipe(
|
|
[inputs["prompt"]] * int(inputs["batch_size"]),
|
|
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
|
|
height=inputs["height"],
|
|
width=inputs["width"],
|
|
num_inference_steps=inputs["steps"],
|
|
guidance_scale=7.5,
|
|
max_embeddings_multiples=inputs["max_embeddings_multiples"],
|
|
).images
|
|
|
|
image_output = []
|
|
for image in images:
|
|
with io.BytesIO() as buf:
|
|
image.save(buf, format="PNG")
|
|
image_output.append(buf.getvalue())
|
|
|
|
if inputs["upscaler"] != "":
|
|
upscaled_images = self.upscaler(
|
|
prompt=inputs["prompt"],
|
|
image=images,
|
|
num_inference_steps=inputs["steps"],
|
|
guidance_scale=0,
|
|
).images
|
|
for image in upscaled_images:
|
|
with io.BytesIO() as buf:
|
|
image.save(buf, format="PNG")
|
|
image_output.append(buf.getvalue())
|
|
|
|
return image_output
|
|
|
|
|
|
@stub.local_entrypoint()
|
|
def entrypoint(
|
|
prompt: str,
|
|
n_prompt: str,
|
|
height: int = 512,
|
|
width: int = 512,
|
|
samples: int = 5,
|
|
batch_size: int = 1,
|
|
steps: int = 20,
|
|
upscaler: str = "",
|
|
):
|
|
"""
|
|
This function is the entrypoint for the Runway CLI.
|
|
The function pass the given prompt to StableDiffusion on Modal,
|
|
gets back a list of images and outputs images to local.
|
|
"""
|
|
|
|
inputs: dict[str, int | str] = {
|
|
"prompt": prompt,
|
|
"n_prompt": n_prompt,
|
|
"height": height,
|
|
"width": width,
|
|
"samples": samples,
|
|
"batch_size": batch_size,
|
|
"steps": steps,
|
|
"upscaler": upscaler, # sd_x2_latent_upscaler, sd_x4_upscaler
|
|
# seed=-1
|
|
}
|
|
|
|
inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
|
|
directory = util.make_directory()
|
|
util.save_prompts(inputs)
|
|
|
|
sd = StableDiffusion()
|
|
for i in range(samples):
|
|
start_time = time.time()
|
|
images = sd.run_inference.call(inputs)
|
|
for j, image_bytes in enumerate(images):
|
|
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
|
|
output_path = directory / f"{formatted_time}_{i}_{j}.png"
|
|
print(f"Saving it to {output_path}")
|
|
with open(output_path, "wb") as file:
|
|
file.write(image_bytes)
|
|
|
|
total_time = time.time() - start_time
|
|
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|