Implement SDXLTxt2Img.
This commit is contained in:
parent
8a0a28e999
commit
6b522e20eb
19
Makefile
19
Makefile
@ -1,4 +1,4 @@
|
||||
deploy:
|
||||
app:
|
||||
cd ./setup_files && modal deploy __main__.py
|
||||
|
||||
# `--upscaler` is a name of upscaler you want to use.
|
||||
@ -7,8 +7,8 @@ deploy:
|
||||
# - `RealESRNet_x4plus`
|
||||
# - `RealESRGAN_x4plus_anime_6B`
|
||||
# - `RealESRGAN_x2plus`
|
||||
run:
|
||||
cd ./sdcli && modal run txt2img.py \
|
||||
img_by_sd15_txt2img:
|
||||
cd ./sdcli && modal run sd15_txt2img.py \
|
||||
--prompt "a photograph of an astronaut riding a horse" \
|
||||
--n-prompt "" \
|
||||
--height 512 \
|
||||
@ -17,4 +17,15 @@ run:
|
||||
--steps 30 \
|
||||
--upscaler "RealESRGAN_x2plus" \
|
||||
--use-face-enhancer "False" \
|
||||
--fix-by-controlnet-tile "True"
|
||||
--fix-by-controlnet-tile "True" \
|
||||
--output-format "avif"
|
||||
|
||||
|
||||
img_by_sdxl_txt2img:
|
||||
cd ./sdcli && modal run sdxl_txt2img.py \
|
||||
--prompt "A dog is running on the grass" \
|
||||
--height 1024 \
|
||||
--width 1024 \
|
||||
--samples 1 \
|
||||
--upscaler "RealESRGAN_x2plus" \
|
||||
--output-format "avif"
|
||||
@ -4,7 +4,7 @@ import modal
|
||||
import util
|
||||
|
||||
stub = modal.Stub("run-stable-diffusion-cli")
|
||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "Txt2Img.run_inference")
|
||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15Txt2Img.run_inference")
|
||||
|
||||
|
||||
@stub.local_entrypoint()
|
||||
51
sdcli/sdxl_txt2img.py
Normal file
51
sdcli/sdxl_txt2img.py
Normal file
@ -0,0 +1,51 @@
|
||||
import time
|
||||
|
||||
import modal
|
||||
import util
|
||||
|
||||
stub = modal.Stub("run-stable-diffusion-cli")
|
||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SDXLTxt2Img.run_inference")
|
||||
|
||||
|
||||
@stub.local_entrypoint()
|
||||
def main(
|
||||
prompt: str,
|
||||
height: int = 1024,
|
||||
width: int = 1024,
|
||||
samples: int = 5,
|
||||
seed: int = -1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: str = "False",
|
||||
output_format: str = "png",
|
||||
):
|
||||
"""
|
||||
This function is the entrypoint for the Runway CLI.
|
||||
The function pass the given prompt to StableDiffusion on Modal,
|
||||
gets back a list of images and outputs images to local.
|
||||
"""
|
||||
directory = util.make_directory()
|
||||
seed_generated = seed
|
||||
for i in range(samples):
|
||||
if seed == -1:
|
||||
seed_generated = util.generate_seed()
|
||||
start_time = time.time()
|
||||
images = stub.run_inference.remote(
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
seed=seed_generated,
|
||||
upscaler=upscaler,
|
||||
use_face_enhancer=use_face_enhancer == "True",
|
||||
output_format=output_format,
|
||||
)
|
||||
util.save_images(directory, images, seed_generated, i, output_format)
|
||||
total_time = time.time() - start_time
|
||||
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|
||||
|
||||
prompts: dict[str, int | str] = {
|
||||
"prompt": prompt,
|
||||
"height": height,
|
||||
"width": width,
|
||||
"samples": samples,
|
||||
}
|
||||
util.save_prompts(prompts)
|
||||
@ -1,12 +1,14 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import stable_diffusion_1_5
|
||||
import stable_diffusion_xl
|
||||
from setup import stub
|
||||
from stable_diffusion_1_5 import Txt2Img
|
||||
|
||||
|
||||
@stub.function(gpu="A10G")
|
||||
def main():
|
||||
Txt2Img
|
||||
stable_diffusion_1_5.SD15Txt2Img
|
||||
stable_diffusion_xl.SDXLTxt2Img
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -64,6 +64,26 @@ def download_model(name: str, model_url: str, token: str):
|
||||
pipe.save_pretrained(cache_path, safe_serialization=True)
|
||||
|
||||
|
||||
def download_model_sdxl(name: str, model_url: str, token: str):
|
||||
"""
|
||||
Download a sdxl model.
|
||||
"""
|
||||
cache_path = os.path.join(BASE_CACHE_PATH, name)
|
||||
pipe = diffusers.StableDiffusionXLPipeline.from_single_file(
|
||||
pretrained_model_link_or_path=model_url,
|
||||
use_auth_token=token,
|
||||
cache_dir=cache_path,
|
||||
)
|
||||
pipe.save_pretrained(cache_path, safe_serialization=True)
|
||||
|
||||
refiner_cache_path = cache_path + "-refiner"
|
||||
refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_single_file(
|
||||
"https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0.safetensors",
|
||||
cache_dir=refiner_cache_path,
|
||||
)
|
||||
refiner.save_pretrained(refiner_cache_path, safe_serialization=True)
|
||||
|
||||
|
||||
def build_image():
|
||||
"""
|
||||
Build the Docker image.
|
||||
@ -76,8 +96,12 @@ def build_image():
|
||||
config = yaml.safe_load(file)
|
||||
|
||||
model = config.get("model")
|
||||
use_xl = config.get("use_xl")
|
||||
if model is not None:
|
||||
download_model(name=model["name"], model_url=model["url"], token=token)
|
||||
if use_xl is not None and use_xl:
|
||||
download_model_sdxl(name=model["name"], model_url=model["url"], token=token)
|
||||
else:
|
||||
download_model(name=model["name"], model_url=model["url"], token=token)
|
||||
|
||||
vae = config.get("vae")
|
||||
if vae is not None:
|
||||
|
||||
@ -18,7 +18,7 @@ from setup import (
|
||||
gpu="A10G",
|
||||
secrets=[Secret.from_dotenv(__file__)],
|
||||
)
|
||||
class Txt2Img:
|
||||
class SD15Txt2Img:
|
||||
"""
|
||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||
"""
|
||||
|
||||
180
setup_files/stable_diffusion_xl.py
Normal file
180
setup_files/stable_diffusion_xl.py
Normal file
@ -0,0 +1,180 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import io
|
||||
import os
|
||||
|
||||
import PIL.Image
|
||||
from modal import Secret, method
|
||||
from setup import BASE_CACHE_PATH, stub
|
||||
|
||||
|
||||
@stub.cls(
|
||||
gpu="A10G",
|
||||
secrets=[Secret.from_dotenv(__file__)],
|
||||
)
|
||||
class SDXLTxt2Img:
|
||||
"""
|
||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
import diffusers
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
config = {}
|
||||
with open("/config.yml", "r") as file:
|
||||
config = yaml.safe_load(file)
|
||||
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
|
||||
if os.path.exists(self.cache_path):
|
||||
print(f"The directory '{self.cache_path}' exists.")
|
||||
else:
|
||||
print(f"The directory '{self.cache_path}' does not exist.")
|
||||
|
||||
self.pipe = diffusers.AutoPipelineForText2Image.from_pretrained(
|
||||
self.cache_path,
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
variant="fp16",
|
||||
)
|
||||
|
||||
self.refiner_cache_path = self.cache_path + "-refiner"
|
||||
self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
||||
self.refiner_cache_path,
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
variant="fp16",
|
||||
)
|
||||
|
||||
@method()
|
||||
def run_inference(
|
||||
self,
|
||||
prompt: str,
|
||||
height: int = 1024,
|
||||
width: int = 1024,
|
||||
seed: int = 1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
output_format: str = "png",
|
||||
) -> list[bytes]:
|
||||
"""
|
||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||
"""
|
||||
import pillow_avif # noqa
|
||||
import torch
|
||||
|
||||
generator = torch.Generator("cuda").manual_seed(seed)
|
||||
self.pipe.to("cuda")
|
||||
generated_images = self.pipe(
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
generator=generator,
|
||||
).images
|
||||
base_images = generated_images
|
||||
|
||||
for image in base_images:
|
||||
self.refiner.to("cuda")
|
||||
refined_images = self.refiner(
|
||||
prompt=prompt,
|
||||
image=image,
|
||||
).images
|
||||
generated_images.extend(refined_images)
|
||||
base_images = refined_images
|
||||
|
||||
if upscaler != "":
|
||||
upscaled = self._upscale(
|
||||
base_images=base_images,
|
||||
half_precision=False,
|
||||
tile=700,
|
||||
upscaler=upscaler,
|
||||
use_face_enhancer=use_face_enhancer,
|
||||
)
|
||||
generated_images.extend(upscaled)
|
||||
|
||||
image_output = []
|
||||
for image in generated_images:
|
||||
with io.BytesIO() as buf:
|
||||
image.save(buf, format=output_format)
|
||||
image_output.append(buf.getvalue())
|
||||
|
||||
return image_output
|
||||
|
||||
def _upscale(
|
||||
self,
|
||||
base_images: list[PIL.Image],
|
||||
half_precision: bool = False,
|
||||
tile: int = 0,
|
||||
tile_pad: int = 10,
|
||||
pre_pad: int = 0,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
) -> list[PIL.Image]:
|
||||
"""
|
||||
Upscale the generated images by the upscaler when `upscaler` is selected.
|
||||
The upscaler can be selected from the following list:
|
||||
- `RealESRGAN_x4plus`
|
||||
- `RealESRNet_x4plus`
|
||||
- `RealESRGAN_x4plus_anime_6B`
|
||||
- `RealESRGAN_x2plus`
|
||||
https://github.com/xinntao/Real-ESRGAN
|
||||
"""
|
||||
import numpy
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from gfpgan import GFPGANer
|
||||
from realesrgan import RealESRGANer
|
||||
from tqdm import tqdm
|
||||
|
||||
model_name = upscaler
|
||||
if model_name == "RealESRGAN_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRNet_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x2plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
||||
netscale = 2
|
||||
else:
|
||||
raise NotImplementedError("Model name not supported")
|
||||
|
||||
upsampler = RealESRGANer(
|
||||
scale=netscale,
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
||||
dni_weight=None,
|
||||
model=upscale_model,
|
||||
tile=tile,
|
||||
tile_pad=tile_pad,
|
||||
pre_pad=pre_pad,
|
||||
half=half_precision,
|
||||
gpu_id=None,
|
||||
)
|
||||
|
||||
if use_face_enhancer:
|
||||
face_enhancer = GFPGANer(
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
|
||||
upscale=netscale,
|
||||
arch="clean",
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=upsampler,
|
||||
)
|
||||
|
||||
upscaled_imgs = []
|
||||
for img in base_images:
|
||||
img = numpy.array(img)
|
||||
if use_face_enhancer:
|
||||
_, _, enhance_result = face_enhancer.enhance(
|
||||
img,
|
||||
has_aligned=False,
|
||||
only_center_face=False,
|
||||
paste_back=True,
|
||||
)
|
||||
else:
|
||||
enhance_result, _ = upsampler.enhance(img)
|
||||
|
||||
upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
|
||||
|
||||
return upscaled_imgs
|
||||
Loading…
x
Reference in New Issue
Block a user