181 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
 | 
						|
import io
 | 
						|
import os
 | 
						|
 | 
						|
import PIL.Image
 | 
						|
from modal import Secret, method
 | 
						|
from setup import BASE_CACHE_PATH, stub
 | 
						|
 | 
						|
 | 
						|
@stub.cls(
 | 
						|
    gpu="A10G",
 | 
						|
    secrets=[Secret.from_dotenv(__file__)],
 | 
						|
)
 | 
						|
class SDXLTxt2Img:
 | 
						|
    """
 | 
						|
    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
						|
    """
 | 
						|
 | 
						|
    def __enter__(self):
 | 
						|
        import diffusers
 | 
						|
        import torch
 | 
						|
        import yaml
 | 
						|
 | 
						|
        config = {}
 | 
						|
        with open("/config.yml", "r") as file:
 | 
						|
            config = yaml.safe_load(file)
 | 
						|
        self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
 | 
						|
        if os.path.exists(self.cache_path):
 | 
						|
            print(f"The directory '{self.cache_path}' exists.")
 | 
						|
        else:
 | 
						|
            print(f"The directory '{self.cache_path}' does not exist.")
 | 
						|
 | 
						|
        self.pipe = diffusers.AutoPipelineForText2Image.from_pretrained(
 | 
						|
            self.cache_path,
 | 
						|
            torch_dtype=torch.float16,
 | 
						|
            use_safetensors=True,
 | 
						|
            variant="fp16",
 | 
						|
        )
 | 
						|
 | 
						|
        self.refiner_cache_path = self.cache_path + "-refiner"
 | 
						|
        self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
 | 
						|
            self.refiner_cache_path,
 | 
						|
            torch_dtype=torch.float16,
 | 
						|
            use_safetensors=True,
 | 
						|
            variant="fp16",
 | 
						|
        )
 | 
						|
 | 
						|
    @method()
 | 
						|
    def run_inference(
 | 
						|
        self,
 | 
						|
        prompt: str,
 | 
						|
        height: int = 1024,
 | 
						|
        width: int = 1024,
 | 
						|
        seed: int = 1,
 | 
						|
        upscaler: str = "",
 | 
						|
        use_face_enhancer: bool = False,
 | 
						|
        output_format: str = "png",
 | 
						|
    ) -> list[bytes]:
 | 
						|
        """
 | 
						|
        Runs the Stable Diffusion pipeline on the given prompt and outputs images.
 | 
						|
        """
 | 
						|
        import pillow_avif  # noqa
 | 
						|
        import torch
 | 
						|
 | 
						|
        generator = torch.Generator("cuda").manual_seed(seed)
 | 
						|
        self.pipe.to("cuda")
 | 
						|
        generated_images = self.pipe(
 | 
						|
            prompt=prompt,
 | 
						|
            height=height,
 | 
						|
            width=width,
 | 
						|
            generator=generator,
 | 
						|
        ).images
 | 
						|
        base_images = generated_images
 | 
						|
 | 
						|
        for image in base_images:
 | 
						|
            self.refiner.to("cuda")
 | 
						|
            refined_images = self.refiner(
 | 
						|
                prompt=prompt,
 | 
						|
                image=image,
 | 
						|
            ).images
 | 
						|
        generated_images.extend(refined_images)
 | 
						|
        base_images = refined_images
 | 
						|
 | 
						|
        if upscaler != "":
 | 
						|
            upscaled = self._upscale(
 | 
						|
                base_images=base_images,
 | 
						|
                half_precision=False,
 | 
						|
                tile=700,
 | 
						|
                upscaler=upscaler,
 | 
						|
                use_face_enhancer=use_face_enhancer,
 | 
						|
            )
 | 
						|
            generated_images.extend(upscaled)
 | 
						|
 | 
						|
        image_output = []
 | 
						|
        for image in generated_images:
 | 
						|
            with io.BytesIO() as buf:
 | 
						|
                image.save(buf, format=output_format)
 | 
						|
                image_output.append(buf.getvalue())
 | 
						|
 | 
						|
        return image_output
 | 
						|
 | 
						|
    def _upscale(
 | 
						|
        self,
 | 
						|
        base_images: list[PIL.Image],
 | 
						|
        half_precision: bool = False,
 | 
						|
        tile: int = 0,
 | 
						|
        tile_pad: int = 10,
 | 
						|
        pre_pad: int = 0,
 | 
						|
        upscaler: str = "",
 | 
						|
        use_face_enhancer: bool = False,
 | 
						|
    ) -> list[PIL.Image]:
 | 
						|
        """
 | 
						|
        Upscale the generated images by the upscaler when `upscaler` is selected.
 | 
						|
        The upscaler can be selected from the following list:
 | 
						|
        - `RealESRGAN_x4plus`
 | 
						|
        - `RealESRNet_x4plus`
 | 
						|
        - `RealESRGAN_x4plus_anime_6B`
 | 
						|
        - `RealESRGAN_x2plus`
 | 
						|
        https://github.com/xinntao/Real-ESRGAN
 | 
						|
        """
 | 
						|
        import numpy
 | 
						|
        from basicsr.archs.rrdbnet_arch import RRDBNet
 | 
						|
        from gfpgan import GFPGANer
 | 
						|
        from realesrgan import RealESRGANer
 | 
						|
        from tqdm import tqdm
 | 
						|
 | 
						|
        model_name = upscaler
 | 
						|
        if model_name == "RealESRGAN_x4plus":
 | 
						|
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
 | 
						|
            netscale = 4
 | 
						|
        elif model_name == "RealESRNet_x4plus":
 | 
						|
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
 | 
						|
            netscale = 4
 | 
						|
        elif model_name == "RealESRGAN_x4plus_anime_6B":
 | 
						|
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
 | 
						|
            netscale = 4
 | 
						|
        elif model_name == "RealESRGAN_x2plus":
 | 
						|
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
 | 
						|
            netscale = 2
 | 
						|
        else:
 | 
						|
            raise NotImplementedError("Model name not supported")
 | 
						|
 | 
						|
        upsampler = RealESRGANer(
 | 
						|
            scale=netscale,
 | 
						|
            model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
 | 
						|
            dni_weight=None,
 | 
						|
            model=upscale_model,
 | 
						|
            tile=tile,
 | 
						|
            tile_pad=tile_pad,
 | 
						|
            pre_pad=pre_pad,
 | 
						|
            half=half_precision,
 | 
						|
            gpu_id=None,
 | 
						|
        )
 | 
						|
 | 
						|
        if use_face_enhancer:
 | 
						|
            face_enhancer = GFPGANer(
 | 
						|
                model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
 | 
						|
                upscale=netscale,
 | 
						|
                arch="clean",
 | 
						|
                channel_multiplier=2,
 | 
						|
                bg_upsampler=upsampler,
 | 
						|
            )
 | 
						|
 | 
						|
        upscaled_imgs = []
 | 
						|
        for img in base_images:
 | 
						|
            img = numpy.array(img)
 | 
						|
            if use_face_enhancer:
 | 
						|
                _, _, enhance_result = face_enhancer.enhance(
 | 
						|
                    img,
 | 
						|
                    has_aligned=False,
 | 
						|
                    only_center_face=False,
 | 
						|
                    paste_back=True,
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                enhance_result, _ = upsampler.enhance(img)
 | 
						|
 | 
						|
            upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
 | 
						|
 | 
						|
        return upscaled_imgs
 |