Implement SDXLTxt2Img.
This commit is contained in:
		
							parent
							
								
									8a0a28e999
								
							
						
					
					
						commit
						6b522e20eb
					
				
							
								
								
									
										19
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										19
									
								
								Makefile
									
									
									
									
									
								
							@ -1,4 +1,4 @@
 | 
				
			|||||||
deploy:
 | 
					app:
 | 
				
			||||||
	cd ./setup_files && modal deploy __main__.py
 | 
						cd ./setup_files && modal deploy __main__.py
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# `--upscaler` is a name of upscaler you want to use.
 | 
					# `--upscaler` is a name of upscaler you want to use.
 | 
				
			||||||
@ -7,8 +7,8 @@ deploy:
 | 
				
			|||||||
#   - `RealESRNet_x4plus`
 | 
					#   - `RealESRNet_x4plus`
 | 
				
			||||||
#   - `RealESRGAN_x4plus_anime_6B`
 | 
					#   - `RealESRGAN_x4plus_anime_6B`
 | 
				
			||||||
#   - `RealESRGAN_x2plus`
 | 
					#   - `RealESRGAN_x2plus`
 | 
				
			||||||
run:
 | 
					img_by_sd15_txt2img:
 | 
				
			||||||
	cd ./sdcli && modal run txt2img.py \
 | 
						cd ./sdcli && modal run sd15_txt2img.py \
 | 
				
			||||||
	--prompt "a photograph of an astronaut riding a horse" \
 | 
						--prompt "a photograph of an astronaut riding a horse" \
 | 
				
			||||||
	--n-prompt "" \
 | 
						--n-prompt "" \
 | 
				
			||||||
	--height 512 \
 | 
						--height 512 \
 | 
				
			||||||
@ -17,4 +17,15 @@ run:
 | 
				
			|||||||
	--steps 30 \
 | 
						--steps 30 \
 | 
				
			||||||
	--upscaler "RealESRGAN_x2plus" \
 | 
						--upscaler "RealESRGAN_x2plus" \
 | 
				
			||||||
	--use-face-enhancer "False" \
 | 
						--use-face-enhancer "False" \
 | 
				
			||||||
	--fix-by-controlnet-tile "True"
 | 
						--fix-by-controlnet-tile "True" \
 | 
				
			||||||
 | 
						--output-format "avif"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					img_by_sdxl_txt2img:
 | 
				
			||||||
 | 
						cd ./sdcli && modal run sdxl_txt2img.py \
 | 
				
			||||||
 | 
						--prompt "A dog is running on the grass" \
 | 
				
			||||||
 | 
						--height 1024 \
 | 
				
			||||||
 | 
						--width 1024 \
 | 
				
			||||||
 | 
						--samples 1 \
 | 
				
			||||||
 | 
						--upscaler "RealESRGAN_x2plus" \
 | 
				
			||||||
 | 
						--output-format "avif"
 | 
				
			||||||
@ -4,7 +4,7 @@ import modal
 | 
				
			|||||||
import util
 | 
					import util
 | 
				
			||||||
 | 
					
 | 
				
			||||||
stub = modal.Stub("run-stable-diffusion-cli")
 | 
					stub = modal.Stub("run-stable-diffusion-cli")
 | 
				
			||||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "Txt2Img.run_inference")
 | 
					stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15Txt2Img.run_inference")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@stub.local_entrypoint()
 | 
					@stub.local_entrypoint()
 | 
				
			||||||
							
								
								
									
										51
									
								
								sdcli/sdxl_txt2img.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										51
									
								
								sdcli/sdxl_txt2img.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,51 @@
 | 
				
			|||||||
 | 
					import time
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import modal
 | 
				
			||||||
 | 
					import util
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					stub = modal.Stub("run-stable-diffusion-cli")
 | 
				
			||||||
 | 
					stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SDXLTxt2Img.run_inference")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@stub.local_entrypoint()
 | 
				
			||||||
 | 
					def main(
 | 
				
			||||||
 | 
					    prompt: str,
 | 
				
			||||||
 | 
					    height: int = 1024,
 | 
				
			||||||
 | 
					    width: int = 1024,
 | 
				
			||||||
 | 
					    samples: int = 5,
 | 
				
			||||||
 | 
					    seed: int = -1,
 | 
				
			||||||
 | 
					    upscaler: str = "",
 | 
				
			||||||
 | 
					    use_face_enhancer: str = "False",
 | 
				
			||||||
 | 
					    output_format: str = "png",
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    This function is the entrypoint for the Runway CLI.
 | 
				
			||||||
 | 
					    The function pass the given prompt to StableDiffusion on Modal,
 | 
				
			||||||
 | 
					    gets back a list of images and outputs images to local.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    directory = util.make_directory()
 | 
				
			||||||
 | 
					    seed_generated = seed
 | 
				
			||||||
 | 
					    for i in range(samples):
 | 
				
			||||||
 | 
					        if seed == -1:
 | 
				
			||||||
 | 
					            seed_generated = util.generate_seed()
 | 
				
			||||||
 | 
					        start_time = time.time()
 | 
				
			||||||
 | 
					        images = stub.run_inference.remote(
 | 
				
			||||||
 | 
					            prompt=prompt,
 | 
				
			||||||
 | 
					            height=height,
 | 
				
			||||||
 | 
					            width=width,
 | 
				
			||||||
 | 
					            seed=seed_generated,
 | 
				
			||||||
 | 
					            upscaler=upscaler,
 | 
				
			||||||
 | 
					            use_face_enhancer=use_face_enhancer == "True",
 | 
				
			||||||
 | 
					            output_format=output_format,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        util.save_images(directory, images, seed_generated, i, output_format)
 | 
				
			||||||
 | 
					        total_time = time.time() - start_time
 | 
				
			||||||
 | 
					        print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    prompts: dict[str, int | str] = {
 | 
				
			||||||
 | 
					        "prompt": prompt,
 | 
				
			||||||
 | 
					        "height": height,
 | 
				
			||||||
 | 
					        "width": width,
 | 
				
			||||||
 | 
					        "samples": samples,
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    util.save_prompts(prompts)
 | 
				
			||||||
@ -1,12 +1,14 @@
 | 
				
			|||||||
from __future__ import annotations
 | 
					from __future__ import annotations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import stable_diffusion_1_5
 | 
				
			||||||
 | 
					import stable_diffusion_xl
 | 
				
			||||||
from setup import stub
 | 
					from setup import stub
 | 
				
			||||||
from stable_diffusion_1_5 import Txt2Img
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@stub.function(gpu="A10G")
 | 
					@stub.function(gpu="A10G")
 | 
				
			||||||
def main():
 | 
					def main():
 | 
				
			||||||
    Txt2Img
 | 
					    stable_diffusion_1_5.SD15Txt2Img
 | 
				
			||||||
 | 
					    stable_diffusion_xl.SDXLTxt2Img
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == "__main__":
 | 
					if __name__ == "__main__":
 | 
				
			||||||
 | 
				
			|||||||
@ -64,6 +64,26 @@ def download_model(name: str, model_url: str, token: str):
 | 
				
			|||||||
    pipe.save_pretrained(cache_path, safe_serialization=True)
 | 
					    pipe.save_pretrained(cache_path, safe_serialization=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def download_model_sdxl(name: str, model_url: str, token: str):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Download a sdxl model.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    cache_path = os.path.join(BASE_CACHE_PATH, name)
 | 
				
			||||||
 | 
					    pipe = diffusers.StableDiffusionXLPipeline.from_single_file(
 | 
				
			||||||
 | 
					        pretrained_model_link_or_path=model_url,
 | 
				
			||||||
 | 
					        use_auth_token=token,
 | 
				
			||||||
 | 
					        cache_dir=cache_path,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    pipe.save_pretrained(cache_path, safe_serialization=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    refiner_cache_path = cache_path + "-refiner"
 | 
				
			||||||
 | 
					    refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_single_file(
 | 
				
			||||||
 | 
					        "https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0.safetensors",
 | 
				
			||||||
 | 
					        cache_dir=refiner_cache_path,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    refiner.save_pretrained(refiner_cache_path, safe_serialization=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def build_image():
 | 
					def build_image():
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    Build the Docker image.
 | 
					    Build the Docker image.
 | 
				
			||||||
@ -76,8 +96,12 @@ def build_image():
 | 
				
			|||||||
        config = yaml.safe_load(file)
 | 
					        config = yaml.safe_load(file)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    model = config.get("model")
 | 
					    model = config.get("model")
 | 
				
			||||||
 | 
					    use_xl = config.get("use_xl")
 | 
				
			||||||
    if model is not None:
 | 
					    if model is not None:
 | 
				
			||||||
        download_model(name=model["name"], model_url=model["url"], token=token)
 | 
					        if use_xl is not None and use_xl:
 | 
				
			||||||
 | 
					            download_model_sdxl(name=model["name"], model_url=model["url"], token=token)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            download_model(name=model["name"], model_url=model["url"], token=token)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    vae = config.get("vae")
 | 
					    vae = config.get("vae")
 | 
				
			||||||
    if vae is not None:
 | 
					    if vae is not None:
 | 
				
			||||||
 | 
				
			|||||||
@ -18,7 +18,7 @@ from setup import (
 | 
				
			|||||||
    gpu="A10G",
 | 
					    gpu="A10G",
 | 
				
			||||||
    secrets=[Secret.from_dotenv(__file__)],
 | 
					    secrets=[Secret.from_dotenv(__file__)],
 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
class Txt2Img:
 | 
					class SD15Txt2Img:
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
					    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										180
									
								
								setup_files/stable_diffusion_xl.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										180
									
								
								setup_files/stable_diffusion_xl.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,180 @@
 | 
				
			|||||||
 | 
					from __future__ import annotations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import io
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import PIL.Image
 | 
				
			||||||
 | 
					from modal import Secret, method
 | 
				
			||||||
 | 
					from setup import BASE_CACHE_PATH, stub
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@stub.cls(
 | 
				
			||||||
 | 
					    gpu="A10G",
 | 
				
			||||||
 | 
					    secrets=[Secret.from_dotenv(__file__)],
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					class SDXLTxt2Img:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __enter__(self):
 | 
				
			||||||
 | 
					        import diffusers
 | 
				
			||||||
 | 
					        import torch
 | 
				
			||||||
 | 
					        import yaml
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        config = {}
 | 
				
			||||||
 | 
					        with open("/config.yml", "r") as file:
 | 
				
			||||||
 | 
					            config = yaml.safe_load(file)
 | 
				
			||||||
 | 
					        self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
 | 
				
			||||||
 | 
					        if os.path.exists(self.cache_path):
 | 
				
			||||||
 | 
					            print(f"The directory '{self.cache_path}' exists.")
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            print(f"The directory '{self.cache_path}' does not exist.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.pipe = diffusers.AutoPipelineForText2Image.from_pretrained(
 | 
				
			||||||
 | 
					            self.cache_path,
 | 
				
			||||||
 | 
					            torch_dtype=torch.float16,
 | 
				
			||||||
 | 
					            use_safetensors=True,
 | 
				
			||||||
 | 
					            variant="fp16",
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.refiner_cache_path = self.cache_path + "-refiner"
 | 
				
			||||||
 | 
					        self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
 | 
				
			||||||
 | 
					            self.refiner_cache_path,
 | 
				
			||||||
 | 
					            torch_dtype=torch.float16,
 | 
				
			||||||
 | 
					            use_safetensors=True,
 | 
				
			||||||
 | 
					            variant="fp16",
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @method()
 | 
				
			||||||
 | 
					    def run_inference(
 | 
				
			||||||
 | 
					        self,
 | 
				
			||||||
 | 
					        prompt: str,
 | 
				
			||||||
 | 
					        height: int = 1024,
 | 
				
			||||||
 | 
					        width: int = 1024,
 | 
				
			||||||
 | 
					        seed: int = 1,
 | 
				
			||||||
 | 
					        upscaler: str = "",
 | 
				
			||||||
 | 
					        use_face_enhancer: bool = False,
 | 
				
			||||||
 | 
					        output_format: str = "png",
 | 
				
			||||||
 | 
					    ) -> list[bytes]:
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        Runs the Stable Diffusion pipeline on the given prompt and outputs images.
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        import pillow_avif  # noqa
 | 
				
			||||||
 | 
					        import torch
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        generator = torch.Generator("cuda").manual_seed(seed)
 | 
				
			||||||
 | 
					        self.pipe.to("cuda")
 | 
				
			||||||
 | 
					        generated_images = self.pipe(
 | 
				
			||||||
 | 
					            prompt=prompt,
 | 
				
			||||||
 | 
					            height=height,
 | 
				
			||||||
 | 
					            width=width,
 | 
				
			||||||
 | 
					            generator=generator,
 | 
				
			||||||
 | 
					        ).images
 | 
				
			||||||
 | 
					        base_images = generated_images
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        for image in base_images:
 | 
				
			||||||
 | 
					            self.refiner.to("cuda")
 | 
				
			||||||
 | 
					            refined_images = self.refiner(
 | 
				
			||||||
 | 
					                prompt=prompt,
 | 
				
			||||||
 | 
					                image=image,
 | 
				
			||||||
 | 
					            ).images
 | 
				
			||||||
 | 
					        generated_images.extend(refined_images)
 | 
				
			||||||
 | 
					        base_images = refined_images
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if upscaler != "":
 | 
				
			||||||
 | 
					            upscaled = self._upscale(
 | 
				
			||||||
 | 
					                base_images=base_images,
 | 
				
			||||||
 | 
					                half_precision=False,
 | 
				
			||||||
 | 
					                tile=700,
 | 
				
			||||||
 | 
					                upscaler=upscaler,
 | 
				
			||||||
 | 
					                use_face_enhancer=use_face_enhancer,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            generated_images.extend(upscaled)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        image_output = []
 | 
				
			||||||
 | 
					        for image in generated_images:
 | 
				
			||||||
 | 
					            with io.BytesIO() as buf:
 | 
				
			||||||
 | 
					                image.save(buf, format=output_format)
 | 
				
			||||||
 | 
					                image_output.append(buf.getvalue())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return image_output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def _upscale(
 | 
				
			||||||
 | 
					        self,
 | 
				
			||||||
 | 
					        base_images: list[PIL.Image],
 | 
				
			||||||
 | 
					        half_precision: bool = False,
 | 
				
			||||||
 | 
					        tile: int = 0,
 | 
				
			||||||
 | 
					        tile_pad: int = 10,
 | 
				
			||||||
 | 
					        pre_pad: int = 0,
 | 
				
			||||||
 | 
					        upscaler: str = "",
 | 
				
			||||||
 | 
					        use_face_enhancer: bool = False,
 | 
				
			||||||
 | 
					    ) -> list[PIL.Image]:
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        Upscale the generated images by the upscaler when `upscaler` is selected.
 | 
				
			||||||
 | 
					        The upscaler can be selected from the following list:
 | 
				
			||||||
 | 
					        - `RealESRGAN_x4plus`
 | 
				
			||||||
 | 
					        - `RealESRNet_x4plus`
 | 
				
			||||||
 | 
					        - `RealESRGAN_x4plus_anime_6B`
 | 
				
			||||||
 | 
					        - `RealESRGAN_x2plus`
 | 
				
			||||||
 | 
					        https://github.com/xinntao/Real-ESRGAN
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        import numpy
 | 
				
			||||||
 | 
					        from basicsr.archs.rrdbnet_arch import RRDBNet
 | 
				
			||||||
 | 
					        from gfpgan import GFPGANer
 | 
				
			||||||
 | 
					        from realesrgan import RealESRGANer
 | 
				
			||||||
 | 
					        from tqdm import tqdm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        model_name = upscaler
 | 
				
			||||||
 | 
					        if model_name == "RealESRGAN_x4plus":
 | 
				
			||||||
 | 
					            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
 | 
				
			||||||
 | 
					            netscale = 4
 | 
				
			||||||
 | 
					        elif model_name == "RealESRNet_x4plus":
 | 
				
			||||||
 | 
					            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
 | 
				
			||||||
 | 
					            netscale = 4
 | 
				
			||||||
 | 
					        elif model_name == "RealESRGAN_x4plus_anime_6B":
 | 
				
			||||||
 | 
					            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
 | 
				
			||||||
 | 
					            netscale = 4
 | 
				
			||||||
 | 
					        elif model_name == "RealESRGAN_x2plus":
 | 
				
			||||||
 | 
					            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
 | 
				
			||||||
 | 
					            netscale = 2
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            raise NotImplementedError("Model name not supported")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        upsampler = RealESRGANer(
 | 
				
			||||||
 | 
					            scale=netscale,
 | 
				
			||||||
 | 
					            model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
 | 
				
			||||||
 | 
					            dni_weight=None,
 | 
				
			||||||
 | 
					            model=upscale_model,
 | 
				
			||||||
 | 
					            tile=tile,
 | 
				
			||||||
 | 
					            tile_pad=tile_pad,
 | 
				
			||||||
 | 
					            pre_pad=pre_pad,
 | 
				
			||||||
 | 
					            half=half_precision,
 | 
				
			||||||
 | 
					            gpu_id=None,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if use_face_enhancer:
 | 
				
			||||||
 | 
					            face_enhancer = GFPGANer(
 | 
				
			||||||
 | 
					                model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
 | 
				
			||||||
 | 
					                upscale=netscale,
 | 
				
			||||||
 | 
					                arch="clean",
 | 
				
			||||||
 | 
					                channel_multiplier=2,
 | 
				
			||||||
 | 
					                bg_upsampler=upsampler,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        upscaled_imgs = []
 | 
				
			||||||
 | 
					        for img in base_images:
 | 
				
			||||||
 | 
					            img = numpy.array(img)
 | 
				
			||||||
 | 
					            if use_face_enhancer:
 | 
				
			||||||
 | 
					                _, _, enhance_result = face_enhancer.enhance(
 | 
				
			||||||
 | 
					                    img,
 | 
				
			||||||
 | 
					                    has_aligned=False,
 | 
				
			||||||
 | 
					                    only_center_face=False,
 | 
				
			||||||
 | 
					                    paste_back=True,
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                enhance_result, _ = upsampler.enhance(img)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return upscaled_imgs
 | 
				
			||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user