Implement SDXLTxt2Img.
This commit is contained in:
		
							parent
							
								
									8a0a28e999
								
							
						
					
					
						commit
						6b522e20eb
					
				
							
								
								
									
										19
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										19
									
								
								Makefile
									
									
									
									
									
								
							@ -1,4 +1,4 @@
 | 
			
		||||
deploy:
 | 
			
		||||
app:
 | 
			
		||||
	cd ./setup_files && modal deploy __main__.py
 | 
			
		||||
 | 
			
		||||
# `--upscaler` is a name of upscaler you want to use.
 | 
			
		||||
@ -7,8 +7,8 @@ deploy:
 | 
			
		||||
#   - `RealESRNet_x4plus`
 | 
			
		||||
#   - `RealESRGAN_x4plus_anime_6B`
 | 
			
		||||
#   - `RealESRGAN_x2plus`
 | 
			
		||||
run:
 | 
			
		||||
	cd ./sdcli && modal run txt2img.py \
 | 
			
		||||
img_by_sd15_txt2img:
 | 
			
		||||
	cd ./sdcli && modal run sd15_txt2img.py \
 | 
			
		||||
	--prompt "a photograph of an astronaut riding a horse" \
 | 
			
		||||
	--n-prompt "" \
 | 
			
		||||
	--height 512 \
 | 
			
		||||
@ -17,4 +17,15 @@ run:
 | 
			
		||||
	--steps 30 \
 | 
			
		||||
	--upscaler "RealESRGAN_x2plus" \
 | 
			
		||||
	--use-face-enhancer "False" \
 | 
			
		||||
	--fix-by-controlnet-tile "True"
 | 
			
		||||
	--fix-by-controlnet-tile "True" \
 | 
			
		||||
	--output-format "avif"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
img_by_sdxl_txt2img:
 | 
			
		||||
	cd ./sdcli && modal run sdxl_txt2img.py \
 | 
			
		||||
	--prompt "A dog is running on the grass" \
 | 
			
		||||
	--height 1024 \
 | 
			
		||||
	--width 1024 \
 | 
			
		||||
	--samples 1 \
 | 
			
		||||
	--upscaler "RealESRGAN_x2plus" \
 | 
			
		||||
	--output-format "avif"
 | 
			
		||||
@ -4,7 +4,7 @@ import modal
 | 
			
		||||
import util
 | 
			
		||||
 | 
			
		||||
stub = modal.Stub("run-stable-diffusion-cli")
 | 
			
		||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "Txt2Img.run_inference")
 | 
			
		||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15Txt2Img.run_inference")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.local_entrypoint()
 | 
			
		||||
							
								
								
									
										51
									
								
								sdcli/sdxl_txt2img.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										51
									
								
								sdcli/sdxl_txt2img.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,51 @@
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
import modal
 | 
			
		||||
import util
 | 
			
		||||
 | 
			
		||||
stub = modal.Stub("run-stable-diffusion-cli")
 | 
			
		||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SDXLTxt2Img.run_inference")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.local_entrypoint()
 | 
			
		||||
def main(
 | 
			
		||||
    prompt: str,
 | 
			
		||||
    height: int = 1024,
 | 
			
		||||
    width: int = 1024,
 | 
			
		||||
    samples: int = 5,
 | 
			
		||||
    seed: int = -1,
 | 
			
		||||
    upscaler: str = "",
 | 
			
		||||
    use_face_enhancer: str = "False",
 | 
			
		||||
    output_format: str = "png",
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    This function is the entrypoint for the Runway CLI.
 | 
			
		||||
    The function pass the given prompt to StableDiffusion on Modal,
 | 
			
		||||
    gets back a list of images and outputs images to local.
 | 
			
		||||
    """
 | 
			
		||||
    directory = util.make_directory()
 | 
			
		||||
    seed_generated = seed
 | 
			
		||||
    for i in range(samples):
 | 
			
		||||
        if seed == -1:
 | 
			
		||||
            seed_generated = util.generate_seed()
 | 
			
		||||
        start_time = time.time()
 | 
			
		||||
        images = stub.run_inference.remote(
 | 
			
		||||
            prompt=prompt,
 | 
			
		||||
            height=height,
 | 
			
		||||
            width=width,
 | 
			
		||||
            seed=seed_generated,
 | 
			
		||||
            upscaler=upscaler,
 | 
			
		||||
            use_face_enhancer=use_face_enhancer == "True",
 | 
			
		||||
            output_format=output_format,
 | 
			
		||||
        )
 | 
			
		||||
        util.save_images(directory, images, seed_generated, i, output_format)
 | 
			
		||||
        total_time = time.time() - start_time
 | 
			
		||||
        print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
 | 
			
		||||
 | 
			
		||||
    prompts: dict[str, int | str] = {
 | 
			
		||||
        "prompt": prompt,
 | 
			
		||||
        "height": height,
 | 
			
		||||
        "width": width,
 | 
			
		||||
        "samples": samples,
 | 
			
		||||
    }
 | 
			
		||||
    util.save_prompts(prompts)
 | 
			
		||||
@ -1,12 +1,14 @@
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
import stable_diffusion_1_5
 | 
			
		||||
import stable_diffusion_xl
 | 
			
		||||
from setup import stub
 | 
			
		||||
from stable_diffusion_1_5 import Txt2Img
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.function(gpu="A10G")
 | 
			
		||||
def main():
 | 
			
		||||
    Txt2Img
 | 
			
		||||
    stable_diffusion_1_5.SD15Txt2Img
 | 
			
		||||
    stable_diffusion_xl.SDXLTxt2Img
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
 | 
			
		||||
@ -64,6 +64,26 @@ def download_model(name: str, model_url: str, token: str):
 | 
			
		||||
    pipe.save_pretrained(cache_path, safe_serialization=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def download_model_sdxl(name: str, model_url: str, token: str):
 | 
			
		||||
    """
 | 
			
		||||
    Download a sdxl model.
 | 
			
		||||
    """
 | 
			
		||||
    cache_path = os.path.join(BASE_CACHE_PATH, name)
 | 
			
		||||
    pipe = diffusers.StableDiffusionXLPipeline.from_single_file(
 | 
			
		||||
        pretrained_model_link_or_path=model_url,
 | 
			
		||||
        use_auth_token=token,
 | 
			
		||||
        cache_dir=cache_path,
 | 
			
		||||
    )
 | 
			
		||||
    pipe.save_pretrained(cache_path, safe_serialization=True)
 | 
			
		||||
 | 
			
		||||
    refiner_cache_path = cache_path + "-refiner"
 | 
			
		||||
    refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_single_file(
 | 
			
		||||
        "https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0.safetensors",
 | 
			
		||||
        cache_dir=refiner_cache_path,
 | 
			
		||||
    )
 | 
			
		||||
    refiner.save_pretrained(refiner_cache_path, safe_serialization=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def build_image():
 | 
			
		||||
    """
 | 
			
		||||
    Build the Docker image.
 | 
			
		||||
@ -76,7 +96,11 @@ def build_image():
 | 
			
		||||
        config = yaml.safe_load(file)
 | 
			
		||||
 | 
			
		||||
    model = config.get("model")
 | 
			
		||||
    use_xl = config.get("use_xl")
 | 
			
		||||
    if model is not None:
 | 
			
		||||
        if use_xl is not None and use_xl:
 | 
			
		||||
            download_model_sdxl(name=model["name"], model_url=model["url"], token=token)
 | 
			
		||||
        else:
 | 
			
		||||
            download_model(name=model["name"], model_url=model["url"], token=token)
 | 
			
		||||
 | 
			
		||||
    vae = config.get("vae")
 | 
			
		||||
 | 
			
		||||
@ -18,7 +18,7 @@ from setup import (
 | 
			
		||||
    gpu="A10G",
 | 
			
		||||
    secrets=[Secret.from_dotenv(__file__)],
 | 
			
		||||
)
 | 
			
		||||
class Txt2Img:
 | 
			
		||||
class SD15Txt2Img:
 | 
			
		||||
    """
 | 
			
		||||
    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										180
									
								
								setup_files/stable_diffusion_xl.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										180
									
								
								setup_files/stable_diffusion_xl.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,180 @@
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
 | 
			
		||||
import io
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
import PIL.Image
 | 
			
		||||
from modal import Secret, method
 | 
			
		||||
from setup import BASE_CACHE_PATH, stub
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.cls(
 | 
			
		||||
    gpu="A10G",
 | 
			
		||||
    secrets=[Secret.from_dotenv(__file__)],
 | 
			
		||||
)
 | 
			
		||||
class SDXLTxt2Img:
 | 
			
		||||
    """
 | 
			
		||||
    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __enter__(self):
 | 
			
		||||
        import diffusers
 | 
			
		||||
        import torch
 | 
			
		||||
        import yaml
 | 
			
		||||
 | 
			
		||||
        config = {}
 | 
			
		||||
        with open("/config.yml", "r") as file:
 | 
			
		||||
            config = yaml.safe_load(file)
 | 
			
		||||
        self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
 | 
			
		||||
        if os.path.exists(self.cache_path):
 | 
			
		||||
            print(f"The directory '{self.cache_path}' exists.")
 | 
			
		||||
        else:
 | 
			
		||||
            print(f"The directory '{self.cache_path}' does not exist.")
 | 
			
		||||
 | 
			
		||||
        self.pipe = diffusers.AutoPipelineForText2Image.from_pretrained(
 | 
			
		||||
            self.cache_path,
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            use_safetensors=True,
 | 
			
		||||
            variant="fp16",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self.refiner_cache_path = self.cache_path + "-refiner"
 | 
			
		||||
        self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
 | 
			
		||||
            self.refiner_cache_path,
 | 
			
		||||
            torch_dtype=torch.float16,
 | 
			
		||||
            use_safetensors=True,
 | 
			
		||||
            variant="fp16",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    @method()
 | 
			
		||||
    def run_inference(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: str,
 | 
			
		||||
        height: int = 1024,
 | 
			
		||||
        width: int = 1024,
 | 
			
		||||
        seed: int = 1,
 | 
			
		||||
        upscaler: str = "",
 | 
			
		||||
        use_face_enhancer: bool = False,
 | 
			
		||||
        output_format: str = "png",
 | 
			
		||||
    ) -> list[bytes]:
 | 
			
		||||
        """
 | 
			
		||||
        Runs the Stable Diffusion pipeline on the given prompt and outputs images.
 | 
			
		||||
        """
 | 
			
		||||
        import pillow_avif  # noqa
 | 
			
		||||
        import torch
 | 
			
		||||
 | 
			
		||||
        generator = torch.Generator("cuda").manual_seed(seed)
 | 
			
		||||
        self.pipe.to("cuda")
 | 
			
		||||
        generated_images = self.pipe(
 | 
			
		||||
            prompt=prompt,
 | 
			
		||||
            height=height,
 | 
			
		||||
            width=width,
 | 
			
		||||
            generator=generator,
 | 
			
		||||
        ).images
 | 
			
		||||
        base_images = generated_images
 | 
			
		||||
 | 
			
		||||
        for image in base_images:
 | 
			
		||||
            self.refiner.to("cuda")
 | 
			
		||||
            refined_images = self.refiner(
 | 
			
		||||
                prompt=prompt,
 | 
			
		||||
                image=image,
 | 
			
		||||
            ).images
 | 
			
		||||
        generated_images.extend(refined_images)
 | 
			
		||||
        base_images = refined_images
 | 
			
		||||
 | 
			
		||||
        if upscaler != "":
 | 
			
		||||
            upscaled = self._upscale(
 | 
			
		||||
                base_images=base_images,
 | 
			
		||||
                half_precision=False,
 | 
			
		||||
                tile=700,
 | 
			
		||||
                upscaler=upscaler,
 | 
			
		||||
                use_face_enhancer=use_face_enhancer,
 | 
			
		||||
            )
 | 
			
		||||
            generated_images.extend(upscaled)
 | 
			
		||||
 | 
			
		||||
        image_output = []
 | 
			
		||||
        for image in generated_images:
 | 
			
		||||
            with io.BytesIO() as buf:
 | 
			
		||||
                image.save(buf, format=output_format)
 | 
			
		||||
                image_output.append(buf.getvalue())
 | 
			
		||||
 | 
			
		||||
        return image_output
 | 
			
		||||
 | 
			
		||||
    def _upscale(
 | 
			
		||||
        self,
 | 
			
		||||
        base_images: list[PIL.Image],
 | 
			
		||||
        half_precision: bool = False,
 | 
			
		||||
        tile: int = 0,
 | 
			
		||||
        tile_pad: int = 10,
 | 
			
		||||
        pre_pad: int = 0,
 | 
			
		||||
        upscaler: str = "",
 | 
			
		||||
        use_face_enhancer: bool = False,
 | 
			
		||||
    ) -> list[PIL.Image]:
 | 
			
		||||
        """
 | 
			
		||||
        Upscale the generated images by the upscaler when `upscaler` is selected.
 | 
			
		||||
        The upscaler can be selected from the following list:
 | 
			
		||||
        - `RealESRGAN_x4plus`
 | 
			
		||||
        - `RealESRNet_x4plus`
 | 
			
		||||
        - `RealESRGAN_x4plus_anime_6B`
 | 
			
		||||
        - `RealESRGAN_x2plus`
 | 
			
		||||
        https://github.com/xinntao/Real-ESRGAN
 | 
			
		||||
        """
 | 
			
		||||
        import numpy
 | 
			
		||||
        from basicsr.archs.rrdbnet_arch import RRDBNet
 | 
			
		||||
        from gfpgan import GFPGANer
 | 
			
		||||
        from realesrgan import RealESRGANer
 | 
			
		||||
        from tqdm import tqdm
 | 
			
		||||
 | 
			
		||||
        model_name = upscaler
 | 
			
		||||
        if model_name == "RealESRGAN_x4plus":
 | 
			
		||||
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
 | 
			
		||||
            netscale = 4
 | 
			
		||||
        elif model_name == "RealESRNet_x4plus":
 | 
			
		||||
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
 | 
			
		||||
            netscale = 4
 | 
			
		||||
        elif model_name == "RealESRGAN_x4plus_anime_6B":
 | 
			
		||||
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
 | 
			
		||||
            netscale = 4
 | 
			
		||||
        elif model_name == "RealESRGAN_x2plus":
 | 
			
		||||
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
 | 
			
		||||
            netscale = 2
 | 
			
		||||
        else:
 | 
			
		||||
            raise NotImplementedError("Model name not supported")
 | 
			
		||||
 | 
			
		||||
        upsampler = RealESRGANer(
 | 
			
		||||
            scale=netscale,
 | 
			
		||||
            model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
 | 
			
		||||
            dni_weight=None,
 | 
			
		||||
            model=upscale_model,
 | 
			
		||||
            tile=tile,
 | 
			
		||||
            tile_pad=tile_pad,
 | 
			
		||||
            pre_pad=pre_pad,
 | 
			
		||||
            half=half_precision,
 | 
			
		||||
            gpu_id=None,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        if use_face_enhancer:
 | 
			
		||||
            face_enhancer = GFPGANer(
 | 
			
		||||
                model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
 | 
			
		||||
                upscale=netscale,
 | 
			
		||||
                arch="clean",
 | 
			
		||||
                channel_multiplier=2,
 | 
			
		||||
                bg_upsampler=upsampler,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        upscaled_imgs = []
 | 
			
		||||
        for img in base_images:
 | 
			
		||||
            img = numpy.array(img)
 | 
			
		||||
            if use_face_enhancer:
 | 
			
		||||
                _, _, enhance_result = face_enhancer.enhance(
 | 
			
		||||
                    img,
 | 
			
		||||
                    has_aligned=False,
 | 
			
		||||
                    only_center_face=False,
 | 
			
		||||
                    paste_back=True,
 | 
			
		||||
                )
 | 
			
		||||
            else:
 | 
			
		||||
                enhance_result, _ = upsampler.enhance(img)
 | 
			
		||||
 | 
			
		||||
            upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
 | 
			
		||||
 | 
			
		||||
        return upscaled_imgs
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user