Merge pull request #100 from hodanov/feature/refactoring
Replace realesrgan to the Stable Diffusion latent upscaler.
This commit is contained in:
commit
6c464dc5bc
13
Makefile
13
Makefile
@ -3,12 +3,6 @@
|
||||
app:
|
||||
cd ./app && modal deploy __main__.py
|
||||
|
||||
# `--upscaler` is a name of upscaler you want to use.
|
||||
# You can use upscalers the below:
|
||||
# - `RealESRGAN_x4plus`
|
||||
# - `RealESRNet_x4plus`
|
||||
# - `RealESRGAN_x4plus_anime_6B`
|
||||
# - `RealESRGAN_x2plus`
|
||||
img_by_sd15_txt2img:
|
||||
cd ./cmd && modal run sd15_txt2img.py \
|
||||
--prompt "a photograph of an astronaut riding a horse" \
|
||||
@ -17,8 +11,7 @@ img_by_sd15_txt2img:
|
||||
--width 768 \
|
||||
--samples 1 \
|
||||
--steps 30 \
|
||||
--upscaler "RealESRGAN_x2plus" \
|
||||
--use-face-enhancer "False" \
|
||||
--use-upscaler "True" \
|
||||
--fix-by-controlnet-tile "True" \
|
||||
--output-format "avif"
|
||||
|
||||
@ -28,8 +21,7 @@ img_by_sd15_img2img:
|
||||
--n-prompt "" \
|
||||
--samples 1 \
|
||||
--steps 30 \
|
||||
--upscaler "RealESRGAN_x2plus" \
|
||||
--use-face-enhancer "False" \
|
||||
--use-upscaler "True" \
|
||||
--fix-by-controlnet-tile "True" \
|
||||
--output-format "avif" \
|
||||
--base-image-url "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
||||
@ -40,5 +32,4 @@ img_by_sdxl_txt2img:
|
||||
--height 1024 \
|
||||
--width 1024 \
|
||||
--samples 1 \
|
||||
--upscaler "RealESRGAN_x2plus" \
|
||||
--output-format "avif"
|
||||
@ -132,8 +132,7 @@ run:
|
||||
--samples 1 \
|
||||
--steps 30 \
|
||||
--seed 12321 |
|
||||
--upscaler "RealESRGAN_x2plus" \
|
||||
--use-face-enhancer "False" \
|
||||
--use-upscaler "True" \
|
||||
--fix-by-controlnet-tile "True" \
|
||||
--output-fomart "avif"
|
||||
```
|
||||
|
||||
@ -134,8 +134,7 @@ run:
|
||||
--samples 1 \
|
||||
--steps 30 \
|
||||
--seed 12321 |
|
||||
--upscaler "RealESRGAN_x2plus" \
|
||||
--use-face-enhancer "False" \
|
||||
--use-upscaler "True" \
|
||||
--fix-by-controlnet-tile "True" \
|
||||
--output-fomart "png"
|
||||
```
|
||||
@ -147,7 +146,7 @@ run:
|
||||
- samples: 生成する画像の数を指定します。
|
||||
- steps: ステップ数を指定します。
|
||||
- seed: seedを指定します。
|
||||
- upscaler: 画像の解像度を上げるためのアップスケーラーを指定します。
|
||||
- use-upscaler: 画像の解像度を上げるためのアップスケーラーを有効にします。
|
||||
- fix-by-controlnet-tile: ControlNet 1.1 Tileの利用有無を指定します。有効にすると、崩れた画像を修復しつつ、高解像度な画像を生成します。
|
||||
- output-format: 出力フォーマットを指定します。avifも指定可能です。
|
||||
|
||||
|
||||
@ -5,10 +5,4 @@ RUN apt-get update \
|
||||
&& apt-get autoremove -y \
|
||||
&& apt-get clean -y \
|
||||
&& rm -rf /var/lib/apt/lists/* \
|
||||
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu121 --no-cache-dir \
|
||||
&& mkdir -p /vol/cache/esrgan \
|
||||
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /vol/cache/esrgan \
|
||||
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth -P /vol/cache/esrgan \
|
||||
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P /vol/cache/esrgan \
|
||||
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth -P /vol/cache/esrgan \
|
||||
&& wget --progress=dot:giga https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P /vol/cache/esrgan
|
||||
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu121 --no-cache-dir
|
||||
|
||||
@ -1,27 +1,15 @@
|
||||
invisible_watermark
|
||||
accelerate
|
||||
diffusers[torch]==0.27.2
|
||||
onnxruntime==1.17.3
|
||||
safetensors==0.4.3
|
||||
accelerate
|
||||
torch==2.2.2
|
||||
transformers==4.40.0
|
||||
xformers==0.0.25.post1
|
||||
|
||||
realesrgan==0.3.0
|
||||
basicsr>=1.4.2
|
||||
facexlib>=0.3.0
|
||||
gfpgan>=1.3.8
|
||||
scipy==1.13.0
|
||||
opencv-python
|
||||
Pillow
|
||||
pillow-avif-plugin
|
||||
torchvision==0.17.2
|
||||
tqdm
|
||||
|
||||
invisible_watermark # To help viewers identify the images as machine-generated.
|
||||
onnxruntime==1.17.3 # ONNX Runtime uses the following optimizations to speed up Stable Diffusion in CUDA.
|
||||
safetensors==0.4.3 # To store tensors safely.
|
||||
controlnet_aux
|
||||
pyyaml
|
||||
|
||||
# Use the below in 'download_from_original_stable_diffusion_ckpt'.
|
||||
omegaconf==2.3.0
|
||||
|
||||
Pillow
|
||||
pillow-avif-plugin # To save images in AVIF format.
|
||||
pyyaml # To read the configuration file by written YAML.
|
||||
peft
|
||||
12
app/setup.py
12
app/setup.py
@ -9,6 +9,7 @@ BASE_CACHE_PATH = "/vol/cache"
|
||||
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
|
||||
BASE_CACHE_PATH_TEXTUAL_INVERSION = "/vol/cache/textual_inversion"
|
||||
BASE_CACHE_PATH_CONTROLNET = "/vol/cache/controlnet"
|
||||
BASE_CACHE_PATH_UPSCALER = "/vol/cache/upscaler"
|
||||
|
||||
|
||||
def download_file(url, file_name, file_path):
|
||||
@ -25,6 +26,15 @@ def download_file(url, file_name, file_path):
|
||||
f.write(downloaded)
|
||||
|
||||
|
||||
def download_upscaler():
|
||||
"""
|
||||
Download the stabilityai/sd-x2-latent-upscaler.
|
||||
"""
|
||||
model_id = "stabilityai/sd-x2-latent-upscaler"
|
||||
upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(model_id)
|
||||
upscaler.save_pretrained(BASE_CACHE_PATH_UPSCALER, safe_serialization=True)
|
||||
|
||||
|
||||
def download_controlnet(name: str, repo_id: str, token: str):
|
||||
"""
|
||||
Download a controlnet.
|
||||
@ -130,6 +140,8 @@ def build_image():
|
||||
file_path=BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||
)
|
||||
|
||||
download_upscaler()
|
||||
|
||||
|
||||
app = App("stable-diffusion-cli")
|
||||
base_stub = Image.from_dockerfile(
|
||||
|
||||
@ -10,6 +10,7 @@ from setup import (
|
||||
BASE_CACHE_PATH_CONTROLNET,
|
||||
BASE_CACHE_PATH_LORA,
|
||||
BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||
BASE_CACHE_PATH_UPSCALER,
|
||||
app,
|
||||
)
|
||||
|
||||
@ -53,6 +54,11 @@ class SD15:
|
||||
)
|
||||
# self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
|
||||
|
||||
self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
|
||||
BASE_CACHE_PATH_UPSCALER,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
|
||||
vae = config.get("vae")
|
||||
if vae is not None:
|
||||
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
|
||||
@ -133,8 +139,7 @@ class SD15:
|
||||
batch_size: int = 1,
|
||||
steps: int = 30,
|
||||
seed: int = 1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
use_upscaler: bool = False,
|
||||
fix_by_controlnet_tile: bool = False,
|
||||
output_format: str = "png",
|
||||
) -> list[bytes]:
|
||||
@ -187,16 +192,18 @@ class SD15:
|
||||
generated_images.extend(fixed_by_controlnet)
|
||||
base_images = fixed_by_controlnet
|
||||
|
||||
# TODO: Upscaler stopped working due to update of dependent packages. Replace with diffusers upscaler.
|
||||
# if upscaler != "":
|
||||
# upscaled = self._upscale(
|
||||
# base_images=base_images,
|
||||
# half_precision=False,
|
||||
# tile=700,
|
||||
# upscaler=upscaler,
|
||||
# use_face_enhancer=use_face_enhancer,
|
||||
# )
|
||||
# generated_images.extend(upscaled)
|
||||
if use_upscaler:
|
||||
self.upscaler.to("cuda")
|
||||
self.upscaler.enable_xformers_memory_efficient_attention()
|
||||
upscaled = self.upscaler(
|
||||
prompt=prompt,
|
||||
negative_prompt=n_prompt,
|
||||
image=base_images[0],
|
||||
num_inference_steps=steps,
|
||||
guidance_scale=0,
|
||||
generator=generator,
|
||||
).images
|
||||
generated_images.extend(upscaled)
|
||||
|
||||
image_output = []
|
||||
for image in generated_images:
|
||||
@ -214,8 +221,7 @@ class SD15:
|
||||
batch_size: int = 1,
|
||||
steps: int = 30,
|
||||
seed: int = 1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
use_upscaler: bool = False,
|
||||
fix_by_controlnet_tile: bool = False,
|
||||
output_format: str = "png",
|
||||
base_image_url: str = "",
|
||||
@ -269,14 +275,17 @@ class SD15:
|
||||
generated_images.extend(fixed_by_controlnet)
|
||||
base_images = fixed_by_controlnet
|
||||
|
||||
if upscaler != "":
|
||||
upscaled = self._upscale(
|
||||
base_images=base_images,
|
||||
half_precision=False,
|
||||
tile=700,
|
||||
upscaler=upscaler,
|
||||
use_face_enhancer=use_face_enhancer,
|
||||
)
|
||||
if use_upscaler:
|
||||
self.upscaler.to("cuda")
|
||||
self.upscaler.enable_xformers_memory_efficient_attention()
|
||||
upscaled = self.upscaler(
|
||||
prompt=prompt,
|
||||
negative_prompt=n_prompt,
|
||||
image=base_images[0],
|
||||
num_inference_steps=steps,
|
||||
guidance_scale=0,
|
||||
generator=generator,
|
||||
).images
|
||||
generated_images.extend(upscaled)
|
||||
|
||||
image_output = []
|
||||
@ -292,81 +301,3 @@ class SD15:
|
||||
width, height = image.size
|
||||
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
|
||||
return img
|
||||
|
||||
def _upscale(
|
||||
self,
|
||||
base_images: list[PIL.Image],
|
||||
half_precision: bool = False,
|
||||
tile: int = 0,
|
||||
tile_pad: int = 10,
|
||||
pre_pad: int = 0,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
) -> list[PIL.Image]:
|
||||
"""
|
||||
Upscale the generated images by the upscaler when `upscaler` is selected.
|
||||
The upscaler can be selected from the following list:
|
||||
- `RealESRGAN_x4plus`
|
||||
- `RealESRNet_x4plus`
|
||||
- `RealESRGAN_x4plus_anime_6B`
|
||||
- `RealESRGAN_x2plus`
|
||||
https://github.com/xinntao/Real-ESRGAN
|
||||
"""
|
||||
import numpy
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from gfpgan import GFPGANer
|
||||
from realesrgan import RealESRGANer
|
||||
|
||||
model_name = upscaler
|
||||
if model_name == "RealESRGAN_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRNet_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x2plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
||||
netscale = 2
|
||||
else:
|
||||
raise NotImplementedError("Model name not supported")
|
||||
|
||||
upsampler = RealESRGANer(
|
||||
scale=netscale,
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
||||
dni_weight=None,
|
||||
model=upscale_model,
|
||||
tile=tile,
|
||||
tile_pad=tile_pad,
|
||||
pre_pad=pre_pad,
|
||||
half=half_precision,
|
||||
gpu_id=None,
|
||||
)
|
||||
|
||||
if use_face_enhancer:
|
||||
face_enhancer = GFPGANer(
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
|
||||
upscale=netscale,
|
||||
arch="clean",
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=upsampler,
|
||||
)
|
||||
|
||||
upscaled_imgs = []
|
||||
for img in base_images:
|
||||
img = numpy.array(img)
|
||||
if use_face_enhancer:
|
||||
_, _, enhance_result = face_enhancer.enhance(
|
||||
img,
|
||||
has_aligned=False,
|
||||
only_center_face=False,
|
||||
paste_back=True,
|
||||
)
|
||||
else:
|
||||
enhance_result, _ = upsampler.enhance(img)
|
||||
|
||||
upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
|
||||
|
||||
return upscaled_imgs
|
||||
|
||||
@ -96,8 +96,7 @@ class SDXLTxt2Img:
|
||||
width: int = 1024,
|
||||
steps: int = 30,
|
||||
seed: int = 1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
use_upscaler: bool = False,
|
||||
output_format: str = "png",
|
||||
) -> list[bytes]:
|
||||
"""
|
||||
@ -157,15 +156,14 @@ class SDXLTxt2Img:
|
||||
# generated_images.extend(fixed_by_controlnet)
|
||||
# base_images = fixed_by_controlnet
|
||||
|
||||
if upscaler != "":
|
||||
upscaled = self._upscale(
|
||||
base_images=base_images,
|
||||
half_precision=False,
|
||||
tile=700,
|
||||
upscaler=upscaler,
|
||||
use_face_enhancer=use_face_enhancer,
|
||||
)
|
||||
generated_images.extend(upscaled)
|
||||
# if use_upscaler:
|
||||
# upscaled = self._upscale(
|
||||
# base_images=base_images,
|
||||
# half_precision=False,
|
||||
# tile=700,
|
||||
# upscaler=upscaler,
|
||||
# )
|
||||
# generated_images.extend(upscaled)
|
||||
|
||||
image_output = []
|
||||
for image in generated_images:
|
||||
@ -180,82 +178,3 @@ class SDXLTxt2Img:
|
||||
width, height = image.size
|
||||
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
|
||||
return img
|
||||
|
||||
def _upscale(
|
||||
self,
|
||||
base_images: list[PIL.Image],
|
||||
half_precision: bool = False,
|
||||
tile: int = 0,
|
||||
tile_pad: int = 10,
|
||||
pre_pad: int = 0,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
) -> list[PIL.Image]:
|
||||
"""
|
||||
Upscale the generated images by the upscaler when `upscaler` is selected.
|
||||
The upscaler can be selected from the following list:
|
||||
- `RealESRGAN_x4plus`
|
||||
- `RealESRNet_x4plus`
|
||||
- `RealESRGAN_x4plus_anime_6B`
|
||||
- `RealESRGAN_x2plus`
|
||||
https://github.com/xinntao/Real-ESRGAN
|
||||
"""
|
||||
import numpy
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from gfpgan import GFPGANer
|
||||
from realesrgan import RealESRGANer
|
||||
from tqdm import tqdm
|
||||
|
||||
model_name = upscaler
|
||||
if model_name == "RealESRGAN_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRNet_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x2plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
||||
netscale = 2
|
||||
else:
|
||||
raise NotImplementedError("Model name not supported")
|
||||
|
||||
upsampler = RealESRGANer(
|
||||
scale=netscale,
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
||||
dni_weight=None,
|
||||
model=upscale_model,
|
||||
tile=tile,
|
||||
tile_pad=tile_pad,
|
||||
pre_pad=pre_pad,
|
||||
half=half_precision,
|
||||
gpu_id=None,
|
||||
)
|
||||
|
||||
if use_face_enhancer:
|
||||
face_enhancer = GFPGANer(
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
|
||||
upscale=netscale,
|
||||
arch="clean",
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=upsampler,
|
||||
)
|
||||
|
||||
upscaled_imgs = []
|
||||
for img in base_images:
|
||||
img = numpy.array(img)
|
||||
if use_face_enhancer:
|
||||
_, _, enhance_result = face_enhancer.enhance(
|
||||
img,
|
||||
has_aligned=False,
|
||||
only_center_face=False,
|
||||
paste_back=True,
|
||||
)
|
||||
else:
|
||||
enhance_result, _ = upsampler.enhance(img)
|
||||
|
||||
upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
|
||||
|
||||
return upscaled_imgs
|
||||
|
||||
@ -15,8 +15,7 @@ def main(
|
||||
batch_size: int = 1,
|
||||
steps: int = 20,
|
||||
seed: int = -1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: str = "False",
|
||||
use_upscaler: str = "False",
|
||||
fix_by_controlnet_tile: str = "False",
|
||||
output_format: str = "png",
|
||||
base_image_url: str = "",
|
||||
@ -38,8 +37,7 @@ def main(
|
||||
batch_size=batch_size,
|
||||
steps=steps,
|
||||
seed=seed_generated,
|
||||
upscaler=upscaler,
|
||||
use_face_enhancer=use_face_enhancer == "True",
|
||||
use_upscaler=use_upscaler == "True",
|
||||
fix_by_controlnet_tile=fix_by_controlnet_tile == "True",
|
||||
output_format=output_format,
|
||||
base_image_url=base_image_url,
|
||||
|
||||
@ -17,8 +17,7 @@ def main(
|
||||
batch_size: int = 1,
|
||||
steps: int = 20,
|
||||
seed: int = -1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: str = "False",
|
||||
use_upscaler: str = "",
|
||||
fix_by_controlnet_tile: str = "False",
|
||||
output_format: str = "png",
|
||||
):
|
||||
@ -41,8 +40,7 @@ def main(
|
||||
batch_size=batch_size,
|
||||
steps=steps,
|
||||
seed=seed_generated,
|
||||
upscaler=upscaler,
|
||||
use_face_enhancer=use_face_enhancer == "True",
|
||||
use_upscaler=use_upscaler == "True",
|
||||
fix_by_controlnet_tile=fix_by_controlnet_tile == "True",
|
||||
output_format=output_format,
|
||||
)
|
||||
|
||||
@ -16,8 +16,7 @@ def main(
|
||||
samples: int = 5,
|
||||
steps: int = 20,
|
||||
seed: int = -1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: str = "False",
|
||||
use_upscaler: str = "False",
|
||||
output_format: str = "png",
|
||||
):
|
||||
"""
|
||||
@ -38,8 +37,7 @@ def main(
|
||||
width=width,
|
||||
steps=steps,
|
||||
seed=seed_generated,
|
||||
upscaler=upscaler,
|
||||
use_face_enhancer=use_face_enhancer == "True",
|
||||
use_upscaler=use_upscaler == "True",
|
||||
output_format=output_format,
|
||||
)
|
||||
util.save_images(directory, images, seed_generated, i, output_format)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user