Merge pull request #5 from hodanov/feature/modify_to_use_seed
Modify to use seed.
This commit is contained in:
commit
7e5ee39974
@ -1,3 +1,4 @@
|
|||||||
HUGGING_FACE_TOKEN=""
|
HUGGING_FACE_TOKEN=""
|
||||||
MODEL_REPO_ID="stabilityai/stable-diffusion-2-1"
|
MODEL_REPO_ID="stabilityai/stable-diffusion-2-1"
|
||||||
MODEL_NAME="stable-diffusion-2-1"
|
MODEL_NAME="stable-diffusion-2-1"
|
||||||
|
USE_VAE="false"
|
||||||
|
|||||||
4
Makefile
4
Makefile
@ -2,8 +2,8 @@ run:
|
|||||||
modal run sd_cli.py \
|
modal run sd_cli.py \
|
||||||
--prompt "A woman with bob hair" \
|
--prompt "A woman with bob hair" \
|
||||||
--n-prompt "" \
|
--n-prompt "" \
|
||||||
|
--upscaler "RealESRGAN_x4plus_anime_6B" \
|
||||||
--height 768 \
|
--height 768 \
|
||||||
--width 512 \
|
--width 512 \
|
||||||
--samples 5 \
|
--samples 5 \
|
||||||
--steps 50 \
|
--steps 50
|
||||||
--upscaler "RealESRGAN_x4plus_anime_6B"
|
|
||||||
|
|||||||
43
sd_cli.py
43
sd_cli.py
@ -75,23 +75,31 @@ class StableDiffusion:
|
|||||||
|
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
|
|
||||||
vae = diffusers.AutoencoderKL.from_pretrained(
|
|
||||||
cache_path,
|
|
||||||
subfolder="vae",
|
|
||||||
)
|
|
||||||
|
|
||||||
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||||
cache_path,
|
cache_path,
|
||||||
subfolder="scheduler",
|
subfolder="scheduler",
|
||||||
)
|
)
|
||||||
|
|
||||||
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
if os.environ["USE_VAE"] == "true":
|
||||||
cache_path,
|
vae = diffusers.AutoencoderKL.from_pretrained(
|
||||||
scheduler=scheduler,
|
cache_path,
|
||||||
vae=vae,
|
subfolder="vae",
|
||||||
custom_pipeline="lpw_stable_diffusion",
|
)
|
||||||
torch_dtype=torch.float16,
|
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||||
).to("cuda")
|
cache_path,
|
||||||
|
scheduler=scheduler,
|
||||||
|
vae=vae,
|
||||||
|
custom_pipeline="lpw_stable_diffusion",
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
).to("cuda")
|
||||||
|
else:
|
||||||
|
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||||
|
cache_path,
|
||||||
|
scheduler=scheduler,
|
||||||
|
custom_pipeline="lpw_stable_diffusion",
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
).to("cuda")
|
||||||
|
|
||||||
self.pipe.enable_xformers_memory_efficient_attention()
|
self.pipe.enable_xformers_memory_efficient_attention()
|
||||||
|
|
||||||
@method()
|
@method()
|
||||||
@ -101,6 +109,7 @@ class StableDiffusion:
|
|||||||
"""
|
"""
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
generator = torch.Generator("cuda").manual_seed(inputs["seed"])
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
with torch.autocast("cuda"):
|
with torch.autocast("cuda"):
|
||||||
base_images = self.pipe(
|
base_images = self.pipe(
|
||||||
@ -111,6 +120,7 @@ class StableDiffusion:
|
|||||||
num_inference_steps=inputs["steps"],
|
num_inference_steps=inputs["steps"],
|
||||||
guidance_scale=7.5,
|
guidance_scale=7.5,
|
||||||
max_embeddings_multiples=inputs["max_embeddings_multiples"],
|
max_embeddings_multiples=inputs["max_embeddings_multiples"],
|
||||||
|
generator=generator,
|
||||||
).images
|
).images
|
||||||
|
|
||||||
if inputs["upscaler"] != "":
|
if inputs["upscaler"] != "":
|
||||||
@ -197,12 +207,13 @@ class StableDiffusion:
|
|||||||
def entrypoint(
|
def entrypoint(
|
||||||
prompt: str,
|
prompt: str,
|
||||||
n_prompt: str,
|
n_prompt: str,
|
||||||
|
upscaler: str,
|
||||||
height: int = 512,
|
height: int = 512,
|
||||||
width: int = 512,
|
width: int = 512,
|
||||||
samples: int = 5,
|
samples: int = 5,
|
||||||
batch_size: int = 1,
|
batch_size: int = 1,
|
||||||
steps: int = 20,
|
steps: int = 20,
|
||||||
upscaler: str = "",
|
seed: int = -1,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
This function is the entrypoint for the Runway CLI.
|
This function is the entrypoint for the Runway CLI.
|
||||||
@ -219,7 +230,7 @@ def entrypoint(
|
|||||||
"batch_size": batch_size,
|
"batch_size": batch_size,
|
||||||
"steps": steps,
|
"steps": steps,
|
||||||
"upscaler": upscaler,
|
"upscaler": upscaler,
|
||||||
# seed=-1
|
"seed": seed,
|
||||||
}
|
}
|
||||||
|
|
||||||
inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
|
inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
|
||||||
@ -227,9 +238,11 @@ def entrypoint(
|
|||||||
|
|
||||||
sd = StableDiffusion()
|
sd = StableDiffusion()
|
||||||
for i in range(samples):
|
for i in range(samples):
|
||||||
|
if seed == -1:
|
||||||
|
inputs["seed"] = util.generate_seed()
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
images = sd.run_inference.call(inputs)
|
images = sd.run_inference.call(inputs)
|
||||||
util.save_images(directory, images, i)
|
util.save_images(directory, images, int(inputs["seed"]), i)
|
||||||
total_time = time.time() - start_time
|
total_time = time.time() - start_time
|
||||||
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|
||||||
|
|
||||||
|
|||||||
19
util.py
19
util.py
@ -1,14 +1,23 @@
|
|||||||
""" Utility functions for the script. """
|
""" Utility functions for the script. """
|
||||||
|
import random
|
||||||
import time
|
import time
|
||||||
from datetime import date
|
from datetime import date
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
OUTPUT_DIRECTORY = "outputs"
|
OUTPUT_DIRECTORY = "outputs"
|
||||||
DATE_TODAY = date.today().strftime("%Y-%m-%d")
|
DATE_TODAY = date.today().strftime("%Y-%m-%d")
|
||||||
|
|
||||||
|
|
||||||
|
def generate_seed() -> int:
|
||||||
|
"""
|
||||||
|
Generate a random seed.
|
||||||
|
"""
|
||||||
|
seed = random.randint(0, 4294967295)
|
||||||
|
print(f"Generate a random seed: {seed}")
|
||||||
|
|
||||||
|
return seed
|
||||||
|
|
||||||
|
|
||||||
def make_directory() -> Path:
|
def make_directory() -> Path:
|
||||||
"""
|
"""
|
||||||
Make a directory for saving outputs.
|
Make a directory for saving outputs.
|
||||||
@ -16,7 +25,7 @@ def make_directory() -> Path:
|
|||||||
directory = Path(f"{OUTPUT_DIRECTORY}/{DATE_TODAY}")
|
directory = Path(f"{OUTPUT_DIRECTORY}/{DATE_TODAY}")
|
||||||
if not directory.exists():
|
if not directory.exists():
|
||||||
directory.mkdir(exist_ok=True, parents=True)
|
directory.mkdir(exist_ok=True, parents=True)
|
||||||
print(f"Make directory: {directory}")
|
print(f"Make a directory: {directory}")
|
||||||
|
|
||||||
return directory
|
return directory
|
||||||
|
|
||||||
@ -54,13 +63,13 @@ def count_token(p: str, n: str) -> int:
|
|||||||
return max_embeddings_multiples
|
return max_embeddings_multiples
|
||||||
|
|
||||||
|
|
||||||
def save_images(directory: Path, images: list[bytes], i: int):
|
def save_images(directory: Path, images: list[bytes], seed: int, i: int):
|
||||||
"""
|
"""
|
||||||
Save images to a file.
|
Save images to a file.
|
||||||
"""
|
"""
|
||||||
for j, image_bytes in enumerate(images):
|
for j, image_bytes in enumerate(images):
|
||||||
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
|
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
|
||||||
output_path = directory / f"{formatted_time}_{i}_{j}.png"
|
output_path = directory / f"{formatted_time}_{seed}_{i}_{j}.png"
|
||||||
print(f"Saving it to {output_path}")
|
print(f"Saving it to {output_path}")
|
||||||
with open(output_path, "wb") as file:
|
with open(output_path, "wb") as file:
|
||||||
file.write(image_bytes)
|
file.write(image_bytes)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user