Merge pull request #5 from hodanov/feature/modify_to_use_seed

Modify to use seed.
This commit is contained in:
hodanov 2023-06-16 20:00:45 +09:00 committed by GitHub
commit 7e5ee39974
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 45 additions and 22 deletions

View File

@ -1,3 +1,4 @@
HUGGING_FACE_TOKEN=""
MODEL_REPO_ID="stabilityai/stable-diffusion-2-1"
MODEL_NAME="stable-diffusion-2-1"
USE_VAE="false"

View File

@ -2,8 +2,8 @@ run:
modal run sd_cli.py \
--prompt "A woman with bob hair" \
--n-prompt "" \
--upscaler "RealESRGAN_x4plus_anime_6B" \
--height 768 \
--width 512 \
--samples 5 \
--steps 50 \
--upscaler "RealESRGAN_x4plus_anime_6B"
--steps 50

View File

@ -75,16 +75,16 @@ class StableDiffusion:
torch.backends.cuda.matmul.allow_tf32 = True
vae = diffusers.AutoencoderKL.from_pretrained(
cache_path,
subfolder="vae",
)
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
cache_path,
subfolder="scheduler",
)
if os.environ["USE_VAE"] == "true":
vae = diffusers.AutoencoderKL.from_pretrained(
cache_path,
subfolder="vae",
)
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
scheduler=scheduler,
@ -92,6 +92,14 @@ class StableDiffusion:
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
).to("cuda")
else:
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
scheduler=scheduler,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
).to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
@method()
@ -101,6 +109,7 @@ class StableDiffusion:
"""
import torch
generator = torch.Generator("cuda").manual_seed(inputs["seed"])
with torch.inference_mode():
with torch.autocast("cuda"):
base_images = self.pipe(
@ -111,6 +120,7 @@ class StableDiffusion:
num_inference_steps=inputs["steps"],
guidance_scale=7.5,
max_embeddings_multiples=inputs["max_embeddings_multiples"],
generator=generator,
).images
if inputs["upscaler"] != "":
@ -197,12 +207,13 @@ class StableDiffusion:
def entrypoint(
prompt: str,
n_prompt: str,
upscaler: str,
height: int = 512,
width: int = 512,
samples: int = 5,
batch_size: int = 1,
steps: int = 20,
upscaler: str = "",
seed: int = -1,
):
"""
This function is the entrypoint for the Runway CLI.
@ -219,7 +230,7 @@ def entrypoint(
"batch_size": batch_size,
"steps": steps,
"upscaler": upscaler,
# seed=-1
"seed": seed,
}
inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
@ -227,9 +238,11 @@ def entrypoint(
sd = StableDiffusion()
for i in range(samples):
if seed == -1:
inputs["seed"] = util.generate_seed()
start_time = time.time()
images = sd.run_inference.call(inputs)
util.save_images(directory, images, i)
util.save_images(directory, images, int(inputs["seed"]), i)
total_time = time.time() - start_time
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")

19
util.py
View File

@ -1,14 +1,23 @@
""" Utility functions for the script. """
import random
import time
from datetime import date
from pathlib import Path
from PIL import Image
OUTPUT_DIRECTORY = "outputs"
DATE_TODAY = date.today().strftime("%Y-%m-%d")
def generate_seed() -> int:
"""
Generate a random seed.
"""
seed = random.randint(0, 4294967295)
print(f"Generate a random seed: {seed}")
return seed
def make_directory() -> Path:
"""
Make a directory for saving outputs.
@ -16,7 +25,7 @@ def make_directory() -> Path:
directory = Path(f"{OUTPUT_DIRECTORY}/{DATE_TODAY}")
if not directory.exists():
directory.mkdir(exist_ok=True, parents=True)
print(f"Make directory: {directory}")
print(f"Make a directory: {directory}")
return directory
@ -54,13 +63,13 @@ def count_token(p: str, n: str) -> int:
return max_embeddings_multiples
def save_images(directory: Path, images: list[bytes], i: int):
def save_images(directory: Path, images: list[bytes], seed: int, i: int):
"""
Save images to a file.
"""
for j, image_bytes in enumerate(images):
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
output_path = directory / f"{formatted_time}_{i}_{j}.png"
output_path = directory / f"{formatted_time}_{seed}_{i}_{j}.png"
print(f"Saving it to {output_path}")
with open(output_path, "wb") as file:
file.write(image_bytes)