Merge branch 'main' of github.com:hodanov/a-script-for-running-sd-on-modal
This commit is contained in:
commit
ce406d7def
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,4 +1,5 @@
|
||||
.DS_Store
|
||||
.mypy_cache/
|
||||
__pycache__/
|
||||
outputs/
|
||||
.env
|
||||
|
||||
@ -1,5 +1,10 @@
|
||||
FROM python:3.11.3-slim-bullseye
|
||||
COPY requirements.txt /
|
||||
RUN apt update \
|
||||
&& apt install -y wget git \
|
||||
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 --pre xformers
|
||||
&& apt install -y wget git libgl1-mesa-glx libglib2.0-0 \
|
||||
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 \
|
||||
&& mkdir -p /vol/cache/esrgan \
|
||||
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /vol/cache/esrgan \
|
||||
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth -P /vol/cache/esrgan \
|
||||
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P /vol/cache/esrgan \
|
||||
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth -P /vol/cache/esrgan
|
||||
|
||||
6
Makefile
6
Makefile
@ -1,7 +1,9 @@
|
||||
run:
|
||||
modal run sd_cli.py \
|
||||
--prompt "a woman with bob hair" \
|
||||
--prompt "A woman with bob hair" \
|
||||
--n-prompt "" \
|
||||
--height 768 \
|
||||
--width 512 \
|
||||
--samples 5
|
||||
--samples 5 \
|
||||
--steps 50 \
|
||||
--upscaler "RealESRGAN_x4plus_anime_6B"
|
||||
|
||||
@ -6,7 +6,7 @@ This is the script to execute Stable Diffusion on [Modal](https://modal.com/).
|
||||
|
||||
The app requires the following to run:
|
||||
|
||||
- python: v3.10 >
|
||||
- python: > 3.10
|
||||
- modal-client
|
||||
- A token for Modal.
|
||||
|
||||
|
||||
@ -1,9 +1,17 @@
|
||||
accelerate
|
||||
scipy
|
||||
diffusers[torch]
|
||||
safetensors
|
||||
diffusers[torch]==0.16.1
|
||||
onnxruntime==1.15.0
|
||||
safetensors==0.3.1
|
||||
torch==2.0.1+cu117
|
||||
transformers==4.29.2
|
||||
xformers==0.0.20
|
||||
|
||||
realesrgan
|
||||
basicsr>=1.4.2
|
||||
facexlib>=0.2.5
|
||||
gfpgan>=1.3.5
|
||||
numpy
|
||||
opencv-python
|
||||
Pillow
|
||||
torchvision
|
||||
torchmetrics
|
||||
omegaconf
|
||||
transformers
|
||||
tqdm
|
||||
|
||||
190
sd_cli.py
190
sd_cli.py
@ -1,12 +1,12 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import io
|
||||
import os
|
||||
import time
|
||||
from datetime import date
|
||||
from pathlib import Path
|
||||
from modal import Image, Secret, Stub, method, Mount
|
||||
|
||||
stub = Stub("stable-diffusion-cli")
|
||||
from modal import Image, Mount, Secret, Stub, method
|
||||
|
||||
import util
|
||||
|
||||
BASE_CACHE_PATH = "/vol/cache"
|
||||
|
||||
@ -18,10 +18,17 @@ def download_models():
|
||||
"""
|
||||
import diffusers
|
||||
|
||||
hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
|
||||
hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
|
||||
model_repo_id = os.environ["MODEL_REPO_ID"]
|
||||
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
|
||||
|
||||
vae = diffusers.AutoencoderKL.from_pretrained(
|
||||
"stabilityai/sd-vae-ft-mse",
|
||||
use_auth_token=hugging_face_token,
|
||||
cache_dir=cache_path,
|
||||
)
|
||||
vae.save_pretrained(cache_path, safe_serialization=True)
|
||||
|
||||
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||
model_repo_id,
|
||||
subfolder="scheduler",
|
||||
@ -45,6 +52,7 @@ stub_image = Image.from_dockerfile(
|
||||
download_models,
|
||||
secrets=[Secret.from_dotenv(__file__)],
|
||||
)
|
||||
stub = Stub("stable-diffusion-cli")
|
||||
stub.image = stub_image
|
||||
|
||||
|
||||
@ -67,6 +75,11 @@ class StableDiffusion:
|
||||
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
vae = diffusers.AutoencoderKL.from_pretrained(
|
||||
cache_path,
|
||||
subfolder="vae",
|
||||
)
|
||||
|
||||
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||
cache_path,
|
||||
subfolder="scheduler",
|
||||
@ -75,21 +88,14 @@ class StableDiffusion:
|
||||
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||
cache_path,
|
||||
scheduler=scheduler,
|
||||
vae=vae,
|
||||
custom_pipeline="lpw_stable_diffusion",
|
||||
torch_dtype=torch.float16,
|
||||
).to("cuda")
|
||||
self.pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
@method()
|
||||
def run_inference(
|
||||
self,
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
steps: int = 30,
|
||||
batch_size: int = 1,
|
||||
height: int = 512,
|
||||
width: int = 512,
|
||||
max_embeddings_multiples: int = 1,
|
||||
) -> list[bytes]:
|
||||
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
|
||||
"""
|
||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||
"""
|
||||
@ -97,82 +103,134 @@ class StableDiffusion:
|
||||
|
||||
with torch.inference_mode():
|
||||
with torch.autocast("cuda"):
|
||||
images = self.pipe(
|
||||
[prompt] * batch_size,
|
||||
negative_prompt=[n_prompt] * batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=steps,
|
||||
base_images = self.pipe(
|
||||
[inputs["prompt"]] * int(inputs["batch_size"]),
|
||||
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
|
||||
height=inputs["height"],
|
||||
width=inputs["width"],
|
||||
num_inference_steps=inputs["steps"],
|
||||
guidance_scale=7.5,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
max_embeddings_multiples=inputs["max_embeddings_multiples"],
|
||||
).images
|
||||
|
||||
if inputs["upscaler"] != "":
|
||||
uplcaled_images = self.upscale(
|
||||
base_images=base_images,
|
||||
model_name="RealESRGAN_x4plus",
|
||||
scale_factor=4,
|
||||
half_precision=False,
|
||||
tile=700,
|
||||
)
|
||||
base_images.extend(uplcaled_images)
|
||||
|
||||
image_output = []
|
||||
for image in images:
|
||||
for image in base_images:
|
||||
with io.BytesIO() as buf:
|
||||
image.save(buf, format="PNG")
|
||||
image_output.append(buf.getvalue())
|
||||
|
||||
return image_output
|
||||
|
||||
@method()
|
||||
def upscale(
|
||||
self,
|
||||
base_images: list[Image.Image],
|
||||
model_name: str = "RealESRGAN_x4plus",
|
||||
scale_factor: float = 4,
|
||||
half_precision: bool = False,
|
||||
tile: int = 0,
|
||||
tile_pad: int = 10,
|
||||
pre_pad: int = 0,
|
||||
) -> list[Image.Image]:
|
||||
"""
|
||||
Upscales the given images using the given model.
|
||||
https://github.com/xinntao/Real-ESRGAN
|
||||
"""
|
||||
import numpy
|
||||
import torch
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from PIL import Image
|
||||
from realesrgan import RealESRGANer
|
||||
from tqdm import tqdm
|
||||
|
||||
if model_name == "RealESRGAN_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRNet_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x2plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
||||
netscale = 2
|
||||
else:
|
||||
raise NotImplementedError("Model name not supported")
|
||||
|
||||
upsampler = RealESRGANer(
|
||||
scale=netscale,
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
||||
dni_weight=None,
|
||||
model=upscale_model,
|
||||
tile=tile,
|
||||
tile_pad=tile_pad,
|
||||
pre_pad=pre_pad,
|
||||
half=half_precision,
|
||||
gpu_id=None,
|
||||
)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
upscaled_imgs = []
|
||||
with tqdm(total=len(base_images)) as progress_bar:
|
||||
for i, img in enumerate(base_images):
|
||||
img = numpy.array(img)
|
||||
enhance_result = upsampler.enhance(img)[0]
|
||||
upscaled_imgs.append(Image.fromarray(enhance_result))
|
||||
progress_bar.update(1)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return upscaled_imgs
|
||||
|
||||
|
||||
@stub.local_entrypoint()
|
||||
def entrypoint(
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
samples: int = 5,
|
||||
steps: int = 30,
|
||||
batch_size: int = 1,
|
||||
height: int = 512,
|
||||
width: int = 512,
|
||||
samples: int = 5,
|
||||
batch_size: int = 1,
|
||||
steps: int = 20,
|
||||
upscaler: str = "",
|
||||
):
|
||||
"""
|
||||
This function is the entrypoint for the Runway CLI.
|
||||
The function pass the given prompt to StableDiffusion on Modal,
|
||||
gets back a list of images and outputs images to local.
|
||||
|
||||
The function is called with the following arguments:
|
||||
- prompt: the prompt to run inference on
|
||||
- n_prompt: the negative prompt to run inference on
|
||||
- samples: the number of samples to generate
|
||||
- steps: the number of steps to run inference for
|
||||
- batch_size: the batch size to use
|
||||
- height: the height of the output image
|
||||
- width: the width of the output image
|
||||
"""
|
||||
print(f"steps => {steps}, sapmles => {samples}, batch_size => {batch_size}")
|
||||
|
||||
max_embeddings_multiples = 1
|
||||
token_count = len(prompt.split())
|
||||
if token_count > 77:
|
||||
max_embeddings_multiples = token_count // 77 + 1
|
||||
inputs: dict[str, int | str] = {
|
||||
"prompt": prompt,
|
||||
"n_prompt": n_prompt,
|
||||
"height": height,
|
||||
"width": width,
|
||||
"samples": samples,
|
||||
"batch_size": batch_size,
|
||||
"steps": steps,
|
||||
"upscaler": upscaler, # sd_x2_latent_upscaler, sd_x4_upscaler
|
||||
# seed=-1
|
||||
}
|
||||
|
||||
print(
|
||||
f"token_count => {token_count}, max_embeddings_multiples => {max_embeddings_multiples}"
|
||||
)
|
||||
inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
|
||||
directory = util.make_directory()
|
||||
|
||||
directory = Path(f"./outputs/{date.today().strftime('%Y-%m-%d')}")
|
||||
if not directory.exists():
|
||||
directory.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
stable_diffusion = StableDiffusion()
|
||||
sd = StableDiffusion()
|
||||
for i in range(samples):
|
||||
start_time = time.time()
|
||||
images = stable_diffusion.run_inference.call(
|
||||
prompt,
|
||||
n_prompt,
|
||||
steps,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
max_embeddings_multiples,
|
||||
)
|
||||
images = sd.run_inference.call(inputs)
|
||||
util.save_images(directory, images, i)
|
||||
total_time = time.time() - start_time
|
||||
print(
|
||||
f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image)."
|
||||
)
|
||||
for j, image_bytes in enumerate(images):
|
||||
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
|
||||
output_path = directory / f"{formatted_time}_{i}_{j}.png"
|
||||
print(f"Saving it to {output_path}")
|
||||
with open(output_path, "wb") as file:
|
||||
file.write(image_bytes)
|
||||
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|
||||
|
||||
util.save_prompts(inputs)
|
||||
|
||||
66
util.py
Normal file
66
util.py
Normal file
@ -0,0 +1,66 @@
|
||||
""" Utility functions for the script. """
|
||||
import time
|
||||
from datetime import date
|
||||
from pathlib import Path
|
||||
|
||||
from PIL import Image
|
||||
|
||||
OUTPUT_DIRECTORY = "outputs"
|
||||
DATE_TODAY = date.today().strftime("%Y-%m-%d")
|
||||
|
||||
|
||||
def make_directory() -> Path:
|
||||
"""
|
||||
Make a directory for saving outputs.
|
||||
"""
|
||||
directory = Path(f"{OUTPUT_DIRECTORY}/{DATE_TODAY}")
|
||||
if not directory.exists():
|
||||
directory.mkdir(exist_ok=True, parents=True)
|
||||
print(f"Make directory: {directory}")
|
||||
|
||||
return directory
|
||||
|
||||
|
||||
def save_prompts(inputs: dict):
|
||||
"""
|
||||
Save prompts to a file.
|
||||
"""
|
||||
prompts_filename = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
|
||||
with open(
|
||||
file=f"{OUTPUT_DIRECTORY}/{DATE_TODAY}/prompts_{prompts_filename}.txt", mode="w", encoding="utf-8"
|
||||
) as file:
|
||||
for name, value in inputs.items():
|
||||
file.write(f"{name} = {repr(value)}\n")
|
||||
print(f"Save prompts: {prompts_filename}.txt")
|
||||
|
||||
|
||||
def count_token(p: str, n: str) -> int:
|
||||
"""
|
||||
Count the number of tokens in the prompt and negative prompt.
|
||||
"""
|
||||
token_count_p = len(p.split())
|
||||
token_count_n = len(n.split())
|
||||
if token_count_p >= token_count_n:
|
||||
token_count = token_count_p
|
||||
else:
|
||||
token_count = token_count_n
|
||||
|
||||
max_embeddings_multiples = 1
|
||||
if token_count > 77:
|
||||
max_embeddings_multiples = token_count // 77 + 1
|
||||
|
||||
print(f"token_count: {token_count}, max_embeddings_multiples: {max_embeddings_multiples}")
|
||||
|
||||
return max_embeddings_multiples
|
||||
|
||||
|
||||
def save_images(directory: Path, images: list[bytes], i: int):
|
||||
"""
|
||||
Save images to a file.
|
||||
"""
|
||||
for j, image_bytes in enumerate(images):
|
||||
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
|
||||
output_path = directory / f"{formatted_time}_{i}_{j}.png"
|
||||
print(f"Saving it to {output_path}")
|
||||
with open(output_path, "wb") as file:
|
||||
file.write(image_bytes)
|
||||
Loading…
x
Reference in New Issue
Block a user