Merge branch 'main' of github.com:hodanov/a-script-for-running-sd-on-modal

This commit is contained in:
hodanov 2023-06-12 11:29:55 +09:00
commit ce406d7def
7 changed files with 220 additions and 80 deletions

1
.gitignore vendored
View File

@ -1,4 +1,5 @@
.DS_Store
.mypy_cache/
__pycache__/
outputs/
.env

View File

@ -1,5 +1,10 @@
FROM python:3.11.3-slim-bullseye
COPY requirements.txt /
RUN apt update \
&& apt install -y wget git \
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 --pre xformers
&& apt install -y wget git libgl1-mesa-glx libglib2.0-0 \
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 \
&& mkdir -p /vol/cache/esrgan \
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /vol/cache/esrgan \
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth -P /vol/cache/esrgan \
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P /vol/cache/esrgan \
&& wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth -P /vol/cache/esrgan

View File

@ -1,7 +1,9 @@
run:
modal run sd_cli.py \
--prompt "a woman with bob hair" \
--prompt "A woman with bob hair" \
--n-prompt "" \
--height 768 \
--width 512 \
--samples 5
--samples 5 \
--steps 50 \
--upscaler "RealESRGAN_x4plus_anime_6B"

View File

@ -6,7 +6,7 @@ This is the script to execute Stable Diffusion on [Modal](https://modal.com/).
The app requires the following to run:
- python: v3.10 >
- python: > 3.10
- modal-client
- A token for Modal.

View File

@ -1,9 +1,17 @@
accelerate
scipy
diffusers[torch]
safetensors
diffusers[torch]==0.16.1
onnxruntime==1.15.0
safetensors==0.3.1
torch==2.0.1+cu117
transformers==4.29.2
xformers==0.0.20
realesrgan
basicsr>=1.4.2
facexlib>=0.2.5
gfpgan>=1.3.5
numpy
opencv-python
Pillow
torchvision
torchmetrics
omegaconf
transformers
tqdm

190
sd_cli.py
View File

@ -1,12 +1,12 @@
from __future__ import annotations
import io
import os
import time
from datetime import date
from pathlib import Path
from modal import Image, Secret, Stub, method, Mount
stub = Stub("stable-diffusion-cli")
from modal import Image, Mount, Secret, Stub, method
import util
BASE_CACHE_PATH = "/vol/cache"
@ -18,10 +18,17 @@ def download_models():
"""
import diffusers
hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
model_repo_id = os.environ["MODEL_REPO_ID"]
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
vae = diffusers.AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse",
use_auth_token=hugging_face_token,
cache_dir=cache_path,
)
vae.save_pretrained(cache_path, safe_serialization=True)
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
model_repo_id,
subfolder="scheduler",
@ -45,6 +52,7 @@ stub_image = Image.from_dockerfile(
download_models,
secrets=[Secret.from_dotenv(__file__)],
)
stub = Stub("stable-diffusion-cli")
stub.image = stub_image
@ -67,6 +75,11 @@ class StableDiffusion:
torch.backends.cuda.matmul.allow_tf32 = True
vae = diffusers.AutoencoderKL.from_pretrained(
cache_path,
subfolder="vae",
)
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
cache_path,
subfolder="scheduler",
@ -75,21 +88,14 @@ class StableDiffusion:
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
scheduler=scheduler,
vae=vae,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
).to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
@method()
def run_inference(
self,
prompt: str,
n_prompt: str,
steps: int = 30,
batch_size: int = 1,
height: int = 512,
width: int = 512,
max_embeddings_multiples: int = 1,
) -> list[bytes]:
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
@ -97,82 +103,134 @@ class StableDiffusion:
with torch.inference_mode():
with torch.autocast("cuda"):
images = self.pipe(
[prompt] * batch_size,
negative_prompt=[n_prompt] * batch_size,
height=height,
width=width,
num_inference_steps=steps,
base_images = self.pipe(
[inputs["prompt"]] * int(inputs["batch_size"]),
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
height=inputs["height"],
width=inputs["width"],
num_inference_steps=inputs["steps"],
guidance_scale=7.5,
max_embeddings_multiples=max_embeddings_multiples,
max_embeddings_multiples=inputs["max_embeddings_multiples"],
).images
if inputs["upscaler"] != "":
uplcaled_images = self.upscale(
base_images=base_images,
model_name="RealESRGAN_x4plus",
scale_factor=4,
half_precision=False,
tile=700,
)
base_images.extend(uplcaled_images)
image_output = []
for image in images:
for image in base_images:
with io.BytesIO() as buf:
image.save(buf, format="PNG")
image_output.append(buf.getvalue())
return image_output
@method()
def upscale(
self,
base_images: list[Image.Image],
model_name: str = "RealESRGAN_x4plus",
scale_factor: float = 4,
half_precision: bool = False,
tile: int = 0,
tile_pad: int = 10,
pre_pad: int = 0,
) -> list[Image.Image]:
"""
Upscales the given images using the given model.
https://github.com/xinntao/Real-ESRGAN
"""
import numpy
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from realesrgan import RealESRGANer
from tqdm import tqdm
if model_name == "RealESRGAN_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRNet_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x4plus_anime_6B":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x2plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
else:
raise NotImplementedError("Model name not supported")
upsampler = RealESRGANer(
scale=netscale,
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
dni_weight=None,
model=upscale_model,
tile=tile,
tile_pad=tile_pad,
pre_pad=pre_pad,
half=half_precision,
gpu_id=None,
)
torch.cuda.empty_cache()
upscaled_imgs = []
with tqdm(total=len(base_images)) as progress_bar:
for i, img in enumerate(base_images):
img = numpy.array(img)
enhance_result = upsampler.enhance(img)[0]
upscaled_imgs.append(Image.fromarray(enhance_result))
progress_bar.update(1)
torch.cuda.empty_cache()
return upscaled_imgs
@stub.local_entrypoint()
def entrypoint(
prompt: str,
n_prompt: str,
samples: int = 5,
steps: int = 30,
batch_size: int = 1,
height: int = 512,
width: int = 512,
samples: int = 5,
batch_size: int = 1,
steps: int = 20,
upscaler: str = "",
):
"""
This function is the entrypoint for the Runway CLI.
The function pass the given prompt to StableDiffusion on Modal,
gets back a list of images and outputs images to local.
The function is called with the following arguments:
- prompt: the prompt to run inference on
- n_prompt: the negative prompt to run inference on
- samples: the number of samples to generate
- steps: the number of steps to run inference for
- batch_size: the batch size to use
- height: the height of the output image
- width: the width of the output image
"""
print(f"steps => {steps}, sapmles => {samples}, batch_size => {batch_size}")
max_embeddings_multiples = 1
token_count = len(prompt.split())
if token_count > 77:
max_embeddings_multiples = token_count // 77 + 1
inputs: dict[str, int | str] = {
"prompt": prompt,
"n_prompt": n_prompt,
"height": height,
"width": width,
"samples": samples,
"batch_size": batch_size,
"steps": steps,
"upscaler": upscaler, # sd_x2_latent_upscaler, sd_x4_upscaler
# seed=-1
}
print(
f"token_count => {token_count}, max_embeddings_multiples => {max_embeddings_multiples}"
)
inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
directory = util.make_directory()
directory = Path(f"./outputs/{date.today().strftime('%Y-%m-%d')}")
if not directory.exists():
directory.mkdir(exist_ok=True, parents=True)
stable_diffusion = StableDiffusion()
sd = StableDiffusion()
for i in range(samples):
start_time = time.time()
images = stable_diffusion.run_inference.call(
prompt,
n_prompt,
steps,
batch_size,
height,
width,
max_embeddings_multiples,
)
images = sd.run_inference.call(inputs)
util.save_images(directory, images, i)
total_time = time.time() - start_time
print(
f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image)."
)
for j, image_bytes in enumerate(images):
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
output_path = directory / f"{formatted_time}_{i}_{j}.png"
print(f"Saving it to {output_path}")
with open(output_path, "wb") as file:
file.write(image_bytes)
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
util.save_prompts(inputs)

66
util.py Normal file
View File

@ -0,0 +1,66 @@
""" Utility functions for the script. """
import time
from datetime import date
from pathlib import Path
from PIL import Image
OUTPUT_DIRECTORY = "outputs"
DATE_TODAY = date.today().strftime("%Y-%m-%d")
def make_directory() -> Path:
"""
Make a directory for saving outputs.
"""
directory = Path(f"{OUTPUT_DIRECTORY}/{DATE_TODAY}")
if not directory.exists():
directory.mkdir(exist_ok=True, parents=True)
print(f"Make directory: {directory}")
return directory
def save_prompts(inputs: dict):
"""
Save prompts to a file.
"""
prompts_filename = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
with open(
file=f"{OUTPUT_DIRECTORY}/{DATE_TODAY}/prompts_{prompts_filename}.txt", mode="w", encoding="utf-8"
) as file:
for name, value in inputs.items():
file.write(f"{name} = {repr(value)}\n")
print(f"Save prompts: {prompts_filename}.txt")
def count_token(p: str, n: str) -> int:
"""
Count the number of tokens in the prompt and negative prompt.
"""
token_count_p = len(p.split())
token_count_n = len(n.split())
if token_count_p >= token_count_n:
token_count = token_count_p
else:
token_count = token_count_n
max_embeddings_multiples = 1
if token_count > 77:
max_embeddings_multiples = token_count // 77 + 1
print(f"token_count: {token_count}, max_embeddings_multiples: {max_embeddings_multiples}")
return max_embeddings_multiples
def save_images(directory: Path, images: list[bytes], i: int):
"""
Save images to a file.
"""
for j, image_bytes in enumerate(images):
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
output_path = directory / f"{formatted_time}_{i}_{j}.png"
print(f"Saving it to {output_path}")
with open(output_path, "wb") as file:
file.write(image_bytes)