Modify sd_cli.py to use dotenv file. Add .env.example.
This commit is contained in:
		
							parent
							
								
									1a599cec7b
								
							
						
					
					
						commit
						daf84a5280
					
				
							
								
								
									
										3
									
								
								.env.example
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										3
									
								
								.env.example
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,3 @@
 | 
				
			|||||||
 | 
					HUGGINGFACE_TOKEN=""
 | 
				
			||||||
 | 
					MODEL_REPO_ID="stabilityai/stable-diffusion-2-1"
 | 
				
			||||||
 | 
					MODEL_NAME="stable-diffusion-2-1"
 | 
				
			||||||
							
								
								
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										1
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							@ -1,3 +1,4 @@
 | 
				
			|||||||
.DS_Store
 | 
					.DS_Store
 | 
				
			||||||
__pycache__/
 | 
					__pycache__/
 | 
				
			||||||
outputs/
 | 
					outputs/
 | 
				
			||||||
 | 
					.env
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										36
									
								
								sd_cli.py
									
									
									
									
									
								
							
							
						
						
									
										36
									
								
								sd_cli.py
									
									
									
									
									
								
							@ -8,11 +8,7 @@ from modal import Image, Secret, Stub, method
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
stub = Stub("stable-diffusion-cli")
 | 
					stub = Stub("stable-diffusion-cli")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
MODEL = {
 | 
					BASE_CACHE_PATH = "/vol/cache"
 | 
				
			||||||
    "repo_id": "runwayml/stable-diffusion-v1-5",
 | 
					 | 
				
			||||||
    "name": "stable-diffusion-v1-5",
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
CACHE_PATH = os.path.join("/vol/cache", MODEL["name"])
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def download_models():
 | 
					def download_models():
 | 
				
			||||||
@ -24,22 +20,24 @@ def download_models():
 | 
				
			|||||||
    import torch
 | 
					    import torch
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
 | 
					    hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
 | 
				
			||||||
 | 
					    model_repo_id = os.environ["MODEL_REPO_ID"]
 | 
				
			||||||
 | 
					    cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
					    scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
				
			||||||
        MODEL["repo_id"],
 | 
					        model_repo_id,
 | 
				
			||||||
        subfolder="scheduler",
 | 
					        subfolder="scheduler",
 | 
				
			||||||
        use_auth_token=hugging_face_token,
 | 
					        use_auth_token=hugging_face_token,
 | 
				
			||||||
        cache_dir=CACHE_PATH,
 | 
					        cache_dir=cache_path,
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    scheduler.save_pretrained(CACHE_PATH, safe_serialization=True)
 | 
					    scheduler.save_pretrained(cache_path, safe_serialization=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
					    pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
				
			||||||
        MODEL["repo_id"],
 | 
					        model_repo_id,
 | 
				
			||||||
        use_auth_token=hugging_face_token,
 | 
					        use_auth_token=hugging_face_token,
 | 
				
			||||||
        torch_dtype=torch.float16,
 | 
					        torch_dtype=torch.float16,
 | 
				
			||||||
        cache_dir=CACHE_PATH,
 | 
					        cache_dir=cache_path,
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    pipe.save_pretrained(CACHE_PATH, safe_serialization=True)
 | 
					    pipe.save_pretrained(cache_path, safe_serialization=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
stub_image = (
 | 
					stub_image = (
 | 
				
			||||||
@ -58,13 +56,14 @@ stub_image = (
 | 
				
			|||||||
    .pip_install("xformers", pre=True)
 | 
					    .pip_install("xformers", pre=True)
 | 
				
			||||||
    .run_function(
 | 
					    .run_function(
 | 
				
			||||||
        download_models,
 | 
					        download_models,
 | 
				
			||||||
        secrets=[Secret.from_name("my-huggingface-secret")],
 | 
					        secrets=[Secret.from_dotenv(__file__)],
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
stub.image = stub_image
 | 
					stub.image = stub_image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@stub.cls(gpu="A10G", secrets=[Secret.from_name("my-huggingface-secret")])
 | 
					# @stub.cls(gpu="A10G", secrets=[Secret.from_name("my-huggingface-secret")])
 | 
				
			||||||
 | 
					@stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)])
 | 
				
			||||||
class StableDiffusion:
 | 
					class StableDiffusion:
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
					    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
				
			||||||
@ -74,16 +73,17 @@ class StableDiffusion:
 | 
				
			|||||||
        import diffusers
 | 
					        import diffusers
 | 
				
			||||||
        import torch
 | 
					        import torch
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if os.path.exists(CACHE_PATH):
 | 
					        cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
 | 
				
			||||||
            print(f"The directory '{CACHE_PATH}' exists.")
 | 
					        if os.path.exists(cache_path):
 | 
				
			||||||
 | 
					            print(f"The directory '{cache_path}' exists.")
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            print(f"The directory '{CACHE_PATH}' does not exist. Download models...")
 | 
					            print(f"The directory '{cache_path}' does not exist. Download models...")
 | 
				
			||||||
            download_models()
 | 
					            download_models()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        torch.backends.cuda.matmul.allow_tf32 = True
 | 
					        torch.backends.cuda.matmul.allow_tf32 = True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
					        scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
				
			||||||
            CACHE_PATH,
 | 
					            cache_path,
 | 
				
			||||||
            subfolder="scheduler",
 | 
					            subfolder="scheduler",
 | 
				
			||||||
            solver_order=2,
 | 
					            solver_order=2,
 | 
				
			||||||
            prediction_type="epsilon",
 | 
					            prediction_type="epsilon",
 | 
				
			||||||
@ -96,7 +96,7 @@ class StableDiffusion:
 | 
				
			|||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
					        self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
				
			||||||
            CACHE_PATH,
 | 
					            cache_path,
 | 
				
			||||||
            scheduler=scheduler,
 | 
					            scheduler=scheduler,
 | 
				
			||||||
            low_cpu_mem_usage=True,
 | 
					            low_cpu_mem_usage=True,
 | 
				
			||||||
            device_map="auto",
 | 
					            device_map="auto",
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user