Update some dependencies. Repair some codes.
This commit is contained in:
parent
4fe518038d
commit
e1639039d7
@ -5,7 +5,7 @@ RUN apt-get update \
|
|||||||
&& apt-get autoremove -y \
|
&& apt-get autoremove -y \
|
||||||
&& apt-get clean -y \
|
&& apt-get clean -y \
|
||||||
&& rm -rf /var/lib/apt/lists/* \
|
&& rm -rf /var/lib/apt/lists/* \
|
||||||
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 --no-cache-dir \
|
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu121 --no-cache-dir \
|
||||||
&& mkdir -p /vol/cache/esrgan \
|
&& mkdir -p /vol/cache/esrgan \
|
||||||
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /vol/cache/esrgan \
|
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /vol/cache/esrgan \
|
||||||
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth -P /vol/cache/esrgan \
|
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth -P /vol/cache/esrgan \
|
||||||
|
|||||||
@ -2,10 +2,10 @@ from __future__ import annotations
|
|||||||
|
|
||||||
import stable_diffusion_1_5
|
import stable_diffusion_1_5
|
||||||
import stable_diffusion_xl
|
import stable_diffusion_xl
|
||||||
from setup import stub
|
from setup import app
|
||||||
|
|
||||||
|
|
||||||
@stub.function(gpu="A10G")
|
@app.function(gpu="A10G")
|
||||||
def main():
|
def main():
|
||||||
stable_diffusion_1_5.SD15
|
stable_diffusion_1_5.SD15
|
||||||
stable_diffusion_xl.SDXLTxt2Img
|
stable_diffusion_xl.SDXLTxt2Img
|
||||||
|
|||||||
@ -1,21 +1,21 @@
|
|||||||
invisible_watermark
|
invisible_watermark
|
||||||
accelerate
|
accelerate
|
||||||
diffusers[torch]==0.24.0
|
diffusers[torch]==0.27.2
|
||||||
onnxruntime==1.16.3
|
onnxruntime==1.17.3
|
||||||
safetensors==0.4.1
|
safetensors==0.4.3
|
||||||
torch==2.1.0
|
torch==2.2.2
|
||||||
transformers==4.39.1
|
transformers==4.39.3
|
||||||
xformers==0.0.22.post7
|
xformers==0.0.25.post1
|
||||||
|
|
||||||
realesrgan==0.3.0
|
realesrgan==0.3.0
|
||||||
basicsr>=1.4.2
|
basicsr>=1.4.2
|
||||||
facexlib>=0.3.0
|
facexlib>=0.3.0
|
||||||
gfpgan>=1.3.8
|
gfpgan>=1.3.8
|
||||||
scipy==1.12.0
|
scipy==1.13.0
|
||||||
opencv-python
|
opencv-python
|
||||||
Pillow
|
Pillow
|
||||||
pillow-avif-plugin
|
pillow-avif-plugin
|
||||||
torchvision
|
torchvision==0.17.2
|
||||||
tqdm
|
tqdm
|
||||||
|
|
||||||
controlnet_aux
|
controlnet_aux
|
||||||
|
|||||||
@ -3,7 +3,7 @@ from __future__ import annotations
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
import diffusers
|
import diffusers
|
||||||
from modal import Image, Mount, Secret, Stub
|
from modal import App, Image, Mount, Secret
|
||||||
|
|
||||||
BASE_CACHE_PATH = "/vol/cache"
|
BASE_CACHE_PATH = "/vol/cache"
|
||||||
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
|
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
|
||||||
@ -58,7 +58,7 @@ def download_model(name: str, model_url: str, token: str):
|
|||||||
cache_path = os.path.join(BASE_CACHE_PATH, name)
|
cache_path = os.path.join(BASE_CACHE_PATH, name)
|
||||||
pipe = diffusers.StableDiffusionPipeline.from_single_file(
|
pipe = diffusers.StableDiffusionPipeline.from_single_file(
|
||||||
pretrained_model_link_or_path=model_url,
|
pretrained_model_link_or_path=model_url,
|
||||||
use_auth_token=token,
|
token=token,
|
||||||
cache_dir=cache_path,
|
cache_dir=cache_path,
|
||||||
)
|
)
|
||||||
pipe.save_pretrained(cache_path, safe_serialization=True)
|
pipe.save_pretrained(cache_path, safe_serialization=True)
|
||||||
@ -131,12 +131,12 @@ def build_image():
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
stub = Stub("stable-diffusion-cli")
|
app = App("stable-diffusion-cli")
|
||||||
base_stub = Image.from_dockerfile(
|
base_stub = Image.from_dockerfile(
|
||||||
path="Dockerfile",
|
path="Dockerfile",
|
||||||
context_mount=Mount.from_local_file("requirements.txt"),
|
context_mount=Mount.from_local_file("requirements.txt"),
|
||||||
)
|
)
|
||||||
stub.image = base_stub.dockerfile_commands(
|
app.image = base_stub.dockerfile_commands(
|
||||||
"FROM base",
|
"FROM base",
|
||||||
"COPY config.yml /",
|
"COPY config.yml /",
|
||||||
context_mount=Mount.from_local_file("config.yml"),
|
context_mount=Mount.from_local_file("config.yml"),
|
||||||
|
|||||||
@ -10,11 +10,11 @@ from setup import (
|
|||||||
BASE_CACHE_PATH_CONTROLNET,
|
BASE_CACHE_PATH_CONTROLNET,
|
||||||
BASE_CACHE_PATH_LORA,
|
BASE_CACHE_PATH_LORA,
|
||||||
BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||||
stub,
|
app,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@stub.cls(
|
@app.cls(
|
||||||
gpu="A10G",
|
gpu="A10G",
|
||||||
secrets=[Secret.from_dotenv(__file__)],
|
secrets=[Secret.from_dotenv(__file__)],
|
||||||
)
|
)
|
||||||
@ -187,15 +187,16 @@ class SD15:
|
|||||||
generated_images.extend(fixed_by_controlnet)
|
generated_images.extend(fixed_by_controlnet)
|
||||||
base_images = fixed_by_controlnet
|
base_images = fixed_by_controlnet
|
||||||
|
|
||||||
if upscaler != "":
|
# TODO: Upscaler stopped working due to update of dependent packages. Replace with diffusers upscaler.
|
||||||
upscaled = self._upscale(
|
# if upscaler != "":
|
||||||
base_images=base_images,
|
# upscaled = self._upscale(
|
||||||
half_precision=False,
|
# base_images=base_images,
|
||||||
tile=700,
|
# half_precision=False,
|
||||||
upscaler=upscaler,
|
# tile=700,
|
||||||
use_face_enhancer=use_face_enhancer,
|
# upscaler=upscaler,
|
||||||
)
|
# use_face_enhancer=use_face_enhancer,
|
||||||
generated_images.extend(upscaled)
|
# )
|
||||||
|
# generated_images.extend(upscaled)
|
||||||
|
|
||||||
image_output = []
|
image_output = []
|
||||||
for image in generated_images:
|
for image in generated_images:
|
||||||
|
|||||||
@ -5,10 +5,10 @@ import os
|
|||||||
|
|
||||||
import PIL.Image
|
import PIL.Image
|
||||||
from modal import Secret, enter, method
|
from modal import Secret, enter, method
|
||||||
from setup import BASE_CACHE_PATH, BASE_CACHE_PATH_CONTROLNET, stub
|
from setup import BASE_CACHE_PATH, app
|
||||||
|
|
||||||
|
|
||||||
@stub.cls(
|
@app.cls(
|
||||||
gpu="A10G",
|
gpu="A10G",
|
||||||
secrets=[Secret.from_dotenv(__file__)],
|
secrets=[Secret.from_dotenv(__file__)],
|
||||||
)
|
)
|
||||||
@ -39,13 +39,13 @@ class SDXLTxt2Img:
|
|||||||
variant="fp16",
|
variant="fp16",
|
||||||
)
|
)
|
||||||
|
|
||||||
# self.refiner_cache_path = self.cache_path + "-refiner"
|
self.refiner_cache_path = self.cache_path + "-refiner"
|
||||||
# self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
||||||
# self.refiner_cache_path,
|
self.refiner_cache_path,
|
||||||
# torch_dtype=torch.float16,
|
torch_dtype=torch.float16,
|
||||||
# use_safetensors=True,
|
use_safetensors=True,
|
||||||
# variant="fp16",
|
variant="fp16",
|
||||||
# )
|
)
|
||||||
|
|
||||||
# controlnets = config.get("controlnets")
|
# controlnets = config.get("controlnets")
|
||||||
# if controlnets is not None:
|
# if controlnets is not None:
|
||||||
@ -94,12 +94,10 @@ class SDXLTxt2Img:
|
|||||||
n_prompt: str,
|
n_prompt: str,
|
||||||
height: int = 1024,
|
height: int = 1024,
|
||||||
width: int = 1024,
|
width: int = 1024,
|
||||||
batch_size: int = 1,
|
|
||||||
steps: int = 30,
|
steps: int = 30,
|
||||||
seed: int = 1,
|
seed: int = 1,
|
||||||
upscaler: str = "",
|
upscaler: str = "",
|
||||||
use_face_enhancer: bool = False,
|
use_face_enhancer: bool = False,
|
||||||
fix_by_controlnet_tile: bool = False,
|
|
||||||
output_format: str = "png",
|
output_format: str = "png",
|
||||||
) -> list[bytes]:
|
) -> list[bytes]:
|
||||||
"""
|
"""
|
||||||
@ -119,37 +117,33 @@ class SDXLTxt2Img:
|
|||||||
).images
|
).images
|
||||||
base_images = generated_images
|
base_images = generated_images
|
||||||
|
|
||||||
# for image in base_images:
|
for image in base_images:
|
||||||
# image = self._resize_image(image=image, scale_factor=2)
|
image = self._resize_image(image=image, scale_factor=2)
|
||||||
# self.refiner.to("cuda")
|
self.refiner.to("cuda")
|
||||||
# refined_images = self.refiner(
|
refined_images = self.refiner(
|
||||||
# prompt=prompt,
|
prompt=prompt,
|
||||||
# negative_prompt=n_prompt,
|
negative_prompt=n_prompt,
|
||||||
# num_inference_steps=steps,
|
num_inference_steps=steps,
|
||||||
# strength=0.1,
|
strength=0.1,
|
||||||
# # guidance_scale=7.5,
|
# guidance_scale=7.5,
|
||||||
# generator=generator,
|
generator=generator,
|
||||||
# image=image,
|
image=image,
|
||||||
# ).images
|
).images
|
||||||
# generated_images.extend(refined_images)
|
generated_images.extend(refined_images)
|
||||||
# base_images = refined_images
|
base_images = refined_images
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
|
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
|
||||||
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
|
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
|
||||||
"""
|
"""
|
||||||
# if fix_by_controlnet_tile:
|
# if fix_by_controlnet_tile:
|
||||||
# max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
|
# max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
|
||||||
# print("========================確認用========================")
|
|
||||||
# print("Step1")
|
|
||||||
# self.controlnet_pipe.to("cuda")
|
# self.controlnet_pipe.to("cuda")
|
||||||
# self.controlnet_pipe.enable_vae_tiling()
|
# self.controlnet_pipe.enable_vae_tiling()
|
||||||
# self.controlnet_pipe.enable_xformers_memory_efficient_attention()
|
# self.controlnet_pipe.enable_xformers_memory_efficient_attention()
|
||||||
# print("Step2")
|
|
||||||
# for image in base_images:
|
# for image in base_images:
|
||||||
# image = self._resize_image(image=image, scale_factor=2)
|
# image = self._resize_image(image=image, scale_factor=2)
|
||||||
# print("Step3")
|
|
||||||
# with torch.autocast("cuda"):
|
# with torch.autocast("cuda"):
|
||||||
# print("Step4")
|
|
||||||
# fixed_by_controlnet = self.controlnet_pipe(
|
# fixed_by_controlnet = self.controlnet_pipe(
|
||||||
# prompt=prompt * batch_size,
|
# prompt=prompt * batch_size,
|
||||||
# negative_prompt=n_prompt * batch_size,
|
# negative_prompt=n_prompt * batch_size,
|
||||||
@ -160,7 +154,6 @@ class SDXLTxt2Img:
|
|||||||
# generator=generator,
|
# generator=generator,
|
||||||
# image=image,
|
# image=image,
|
||||||
# ).images
|
# ).images
|
||||||
# print("Step5")
|
|
||||||
# generated_images.extend(fixed_by_controlnet)
|
# generated_images.extend(fixed_by_controlnet)
|
||||||
# base_images = fixed_by_controlnet
|
# base_images = fixed_by_controlnet
|
||||||
|
|
||||||
|
|||||||
@ -3,11 +3,11 @@ import time
|
|||||||
import modal
|
import modal
|
||||||
import util
|
import util
|
||||||
|
|
||||||
stub = modal.Stub("run-stable-diffusion-cli")
|
app = modal.App("run-stable-diffusion-cli")
|
||||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15.run_txt2img_inference")
|
app.run_inference = modal.Function.from_name("stable-diffusion-cli", "SD15.run_txt2img_inference")
|
||||||
|
|
||||||
|
|
||||||
@stub.local_entrypoint()
|
@app.local_entrypoint()
|
||||||
def main(
|
def main(
|
||||||
prompt: str,
|
prompt: str,
|
||||||
n_prompt: str,
|
n_prompt: str,
|
||||||
@ -33,7 +33,7 @@ def main(
|
|||||||
if seed == -1:
|
if seed == -1:
|
||||||
seed_generated = util.generate_seed()
|
seed_generated = util.generate_seed()
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
images = stub.run_inference.remote(
|
images = app.run_inference.remote(
|
||||||
prompt=prompt,
|
prompt=prompt,
|
||||||
n_prompt=n_prompt,
|
n_prompt=n_prompt,
|
||||||
height=height,
|
height=height,
|
||||||
|
|||||||
@ -3,16 +3,18 @@ import time
|
|||||||
import modal
|
import modal
|
||||||
import util
|
import util
|
||||||
|
|
||||||
stub = modal.Stub("run-stable-diffusion-cli")
|
app = modal.Stub("run-stable-diffusion-cli")
|
||||||
stub.run_inference = modal.Function.from_name("stable-diffusion-cli", "SDXLTxt2Img.run_inference")
|
app.run_inference = modal.Function.from_name("stable-diffusion-cli", "SDXLTxt2Img.run_inference")
|
||||||
|
|
||||||
|
|
||||||
@stub.local_entrypoint()
|
@app.local_entrypoint()
|
||||||
def main(
|
def main(
|
||||||
prompt: str,
|
prompt: str,
|
||||||
|
n_prompt: str,
|
||||||
height: int = 1024,
|
height: int = 1024,
|
||||||
width: int = 1024,
|
width: int = 1024,
|
||||||
samples: int = 5,
|
samples: int = 5,
|
||||||
|
steps: int = 20,
|
||||||
seed: int = -1,
|
seed: int = -1,
|
||||||
upscaler: str = "",
|
upscaler: str = "",
|
||||||
use_face_enhancer: str = "False",
|
use_face_enhancer: str = "False",
|
||||||
@ -29,10 +31,12 @@ def main(
|
|||||||
if seed == -1:
|
if seed == -1:
|
||||||
seed_generated = util.generate_seed()
|
seed_generated = util.generate_seed()
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
images = stub.run_inference.remote(
|
images = app.run_inference.remote(
|
||||||
prompt=prompt,
|
prompt=prompt,
|
||||||
|
n_prompt=n_prompt,
|
||||||
height=height,
|
height=height,
|
||||||
width=width,
|
width=width,
|
||||||
|
steps=steps,
|
||||||
seed=seed_generated,
|
seed=seed_generated,
|
||||||
upscaler=upscaler,
|
upscaler=upscaler,
|
||||||
use_face_enhancer=use_face_enhancer == "True",
|
use_face_enhancer=use_face_enhancer == "True",
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user