175 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
 | 
						|
import io
 | 
						|
import os
 | 
						|
import time
 | 
						|
 | 
						|
from modal import Image, Mount, Secret, Stub, method
 | 
						|
 | 
						|
import util
 | 
						|
 | 
						|
BASE_CACHE_PATH = "/vol/cache"
 | 
						|
 | 
						|
 | 
						|
def download_models():
 | 
						|
    """
 | 
						|
    Downloads the model from Hugging Face and saves it to the cache path using
 | 
						|
    diffusers.StableDiffusionPipeline.from_pretrained().
 | 
						|
    """
 | 
						|
    import diffusers
 | 
						|
 | 
						|
    hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
 | 
						|
    model_repo_id = os.environ["MODEL_REPO_ID"]
 | 
						|
    cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
 | 
						|
 | 
						|
    scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
						|
        model_repo_id,
 | 
						|
        subfolder="scheduler",
 | 
						|
        use_auth_token=hugging_face_token,
 | 
						|
        cache_dir=cache_path,
 | 
						|
    )
 | 
						|
    scheduler.save_pretrained(cache_path, safe_serialization=True)
 | 
						|
 | 
						|
    pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
						|
        model_repo_id,
 | 
						|
        use_auth_token=hugging_face_token,
 | 
						|
        cache_dir=cache_path,
 | 
						|
    )
 | 
						|
    pipe.save_pretrained(cache_path, safe_serialization=True)
 | 
						|
 | 
						|
 | 
						|
stub_image = Image.from_dockerfile(
 | 
						|
    path="./Dockerfile",
 | 
						|
    context_mount=Mount.from_local_file("./requirements.txt"),
 | 
						|
).run_function(
 | 
						|
    download_models,
 | 
						|
    secrets=[Secret.from_dotenv(__file__)],
 | 
						|
)
 | 
						|
stub = Stub("stable-diffusion-cli")
 | 
						|
stub.image = stub_image
 | 
						|
 | 
						|
 | 
						|
@stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)])
 | 
						|
class StableDiffusion:
 | 
						|
    """
 | 
						|
    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
						|
    """
 | 
						|
 | 
						|
    def __enter__(self):
 | 
						|
        import diffusers
 | 
						|
        import torch
 | 
						|
 | 
						|
        cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
 | 
						|
        if os.path.exists(cache_path):
 | 
						|
            print(f"The directory '{cache_path}' exists.")
 | 
						|
        else:
 | 
						|
            print(f"The directory '{cache_path}' does not exist. Download models...")
 | 
						|
            download_models()
 | 
						|
 | 
						|
        torch.backends.cuda.matmul.allow_tf32 = True
 | 
						|
 | 
						|
        scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
						|
            cache_path,
 | 
						|
            subfolder="scheduler",
 | 
						|
        )
 | 
						|
 | 
						|
        self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
						|
            cache_path,
 | 
						|
            scheduler=scheduler,
 | 
						|
            custom_pipeline="lpw_stable_diffusion",
 | 
						|
        ).to("cuda")
 | 
						|
        self.pipe.enable_xformers_memory_efficient_attention()
 | 
						|
 | 
						|
        self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
 | 
						|
            "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
 | 
						|
        ).to("cuda")
 | 
						|
        self.upscaler.enable_xformers_memory_efficient_attention()
 | 
						|
 | 
						|
        # model_id = "stabilityai/stable-diffusion-x4-upscaler"
 | 
						|
        # self.upscaler = diffusers.StableDiffusionUpscalePipeline.from_pretrained(
 | 
						|
        #     , revision="fp16", torch_dtype=torch.float16
 | 
						|
        # ).to("cuda")
 | 
						|
        # self.upscaler.enable_xformers_memory_efficient_attention()
 | 
						|
 | 
						|
    @method()
 | 
						|
    def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
 | 
						|
        """
 | 
						|
        Runs the Stable Diffusion pipeline on the given prompt and outputs images.
 | 
						|
        """
 | 
						|
        import torch
 | 
						|
 | 
						|
        with torch.inference_mode():
 | 
						|
            with torch.autocast("cuda"):
 | 
						|
                images = self.pipe(
 | 
						|
                    [inputs["prompt"]] * int(inputs["batch_size"]),
 | 
						|
                    negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
 | 
						|
                    height=inputs["height"],
 | 
						|
                    width=inputs["width"],
 | 
						|
                    num_inference_steps=inputs["steps"],
 | 
						|
                    guidance_scale=7.5,
 | 
						|
                    max_embeddings_multiples=inputs["max_embeddings_multiples"],
 | 
						|
                ).images
 | 
						|
 | 
						|
        image_output = []
 | 
						|
        for image in images:
 | 
						|
            with io.BytesIO() as buf:
 | 
						|
                image.save(buf, format="PNG")
 | 
						|
                image_output.append(buf.getvalue())
 | 
						|
 | 
						|
        if inputs["upscaler"] != "":
 | 
						|
            upscaled_images = self.upscaler(
 | 
						|
                prompt=inputs["prompt"],
 | 
						|
                image=images,
 | 
						|
                num_inference_steps=inputs["steps"],
 | 
						|
                guidance_scale=0,
 | 
						|
            ).images
 | 
						|
            for image in upscaled_images:
 | 
						|
                with io.BytesIO() as buf:
 | 
						|
                    image.save(buf, format="PNG")
 | 
						|
                    image_output.append(buf.getvalue())
 | 
						|
 | 
						|
        return image_output
 | 
						|
 | 
						|
 | 
						|
@stub.local_entrypoint()
 | 
						|
def entrypoint(
 | 
						|
    prompt: str,
 | 
						|
    n_prompt: str,
 | 
						|
    height: int = 512,
 | 
						|
    width: int = 512,
 | 
						|
    samples: int = 5,
 | 
						|
    batch_size: int = 1,
 | 
						|
    steps: int = 20,
 | 
						|
    upscaler: str = "",
 | 
						|
):
 | 
						|
    """
 | 
						|
    This function is the entrypoint for the Runway CLI.
 | 
						|
    The function pass the given prompt to StableDiffusion on Modal,
 | 
						|
    gets back a list of images and outputs images to local.
 | 
						|
    """
 | 
						|
 | 
						|
    inputs: dict[str, int | str] = {
 | 
						|
        "prompt": prompt,
 | 
						|
        "n_prompt": n_prompt,
 | 
						|
        "height": height,
 | 
						|
        "width": width,
 | 
						|
        "samples": samples,
 | 
						|
        "batch_size": batch_size,
 | 
						|
        "steps": steps,
 | 
						|
        "upscaler": upscaler,  # sd_x2_latent_upscaler, sd_x4_upscaler
 | 
						|
        # seed=-1
 | 
						|
    }
 | 
						|
 | 
						|
    inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
 | 
						|
    directory = util.make_directory()
 | 
						|
 | 
						|
    sd = StableDiffusion()
 | 
						|
    for i in range(samples):
 | 
						|
        start_time = time.time()
 | 
						|
        images = sd.run_inference.call(inputs)
 | 
						|
        util.save_images(directory, images, i)
 | 
						|
        total_time = time.time() - start_time
 | 
						|
        print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
 | 
						|
 | 
						|
    util.save_prompts(inputs)
 |