181 lines
5.6 KiB
Python
181 lines
5.6 KiB
Python
from __future__ import annotations
|
|
|
|
import io
|
|
import os
|
|
|
|
import PIL.Image
|
|
from modal import Secret, method
|
|
from setup import BASE_CACHE_PATH, stub
|
|
|
|
|
|
@stub.cls(
|
|
gpu="A10G",
|
|
secrets=[Secret.from_dotenv(__file__)],
|
|
)
|
|
class SDXLTxt2Img:
|
|
"""
|
|
A class that wraps the Stable Diffusion pipeline and scheduler.
|
|
"""
|
|
|
|
def __enter__(self):
|
|
import diffusers
|
|
import torch
|
|
import yaml
|
|
|
|
config = {}
|
|
with open("/config.yml", "r") as file:
|
|
config = yaml.safe_load(file)
|
|
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
|
|
if os.path.exists(self.cache_path):
|
|
print(f"The directory '{self.cache_path}' exists.")
|
|
else:
|
|
print(f"The directory '{self.cache_path}' does not exist.")
|
|
|
|
self.pipe = diffusers.AutoPipelineForText2Image.from_pretrained(
|
|
self.cache_path,
|
|
torch_dtype=torch.float16,
|
|
use_safetensors=True,
|
|
variant="fp16",
|
|
)
|
|
|
|
self.refiner_cache_path = self.cache_path + "-refiner"
|
|
self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
|
self.refiner_cache_path,
|
|
torch_dtype=torch.float16,
|
|
use_safetensors=True,
|
|
variant="fp16",
|
|
)
|
|
|
|
@method()
|
|
def run_inference(
|
|
self,
|
|
prompt: str,
|
|
height: int = 1024,
|
|
width: int = 1024,
|
|
seed: int = 1,
|
|
upscaler: str = "",
|
|
use_face_enhancer: bool = False,
|
|
output_format: str = "png",
|
|
) -> list[bytes]:
|
|
"""
|
|
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
|
"""
|
|
import pillow_avif # noqa
|
|
import torch
|
|
|
|
generator = torch.Generator("cuda").manual_seed(seed)
|
|
self.pipe.to("cuda")
|
|
generated_images = self.pipe(
|
|
prompt=prompt,
|
|
height=height,
|
|
width=width,
|
|
generator=generator,
|
|
).images
|
|
base_images = generated_images
|
|
|
|
for image in base_images:
|
|
self.refiner.to("cuda")
|
|
refined_images = self.refiner(
|
|
prompt=prompt,
|
|
image=image,
|
|
).images
|
|
generated_images.extend(refined_images)
|
|
base_images = refined_images
|
|
|
|
if upscaler != "":
|
|
upscaled = self._upscale(
|
|
base_images=base_images,
|
|
half_precision=False,
|
|
tile=700,
|
|
upscaler=upscaler,
|
|
use_face_enhancer=use_face_enhancer,
|
|
)
|
|
generated_images.extend(upscaled)
|
|
|
|
image_output = []
|
|
for image in generated_images:
|
|
with io.BytesIO() as buf:
|
|
image.save(buf, format=output_format)
|
|
image_output.append(buf.getvalue())
|
|
|
|
return image_output
|
|
|
|
def _upscale(
|
|
self,
|
|
base_images: list[PIL.Image],
|
|
half_precision: bool = False,
|
|
tile: int = 0,
|
|
tile_pad: int = 10,
|
|
pre_pad: int = 0,
|
|
upscaler: str = "",
|
|
use_face_enhancer: bool = False,
|
|
) -> list[PIL.Image]:
|
|
"""
|
|
Upscale the generated images by the upscaler when `upscaler` is selected.
|
|
The upscaler can be selected from the following list:
|
|
- `RealESRGAN_x4plus`
|
|
- `RealESRNet_x4plus`
|
|
- `RealESRGAN_x4plus_anime_6B`
|
|
- `RealESRGAN_x2plus`
|
|
https://github.com/xinntao/Real-ESRGAN
|
|
"""
|
|
import numpy
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
from gfpgan import GFPGANer
|
|
from realesrgan import RealESRGANer
|
|
from tqdm import tqdm
|
|
|
|
model_name = upscaler
|
|
if model_name == "RealESRGAN_x4plus":
|
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
netscale = 4
|
|
elif model_name == "RealESRNet_x4plus":
|
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
netscale = 4
|
|
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
netscale = 4
|
|
elif model_name == "RealESRGAN_x2plus":
|
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
netscale = 2
|
|
else:
|
|
raise NotImplementedError("Model name not supported")
|
|
|
|
upsampler = RealESRGANer(
|
|
scale=netscale,
|
|
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
|
dni_weight=None,
|
|
model=upscale_model,
|
|
tile=tile,
|
|
tile_pad=tile_pad,
|
|
pre_pad=pre_pad,
|
|
half=half_precision,
|
|
gpu_id=None,
|
|
)
|
|
|
|
if use_face_enhancer:
|
|
face_enhancer = GFPGANer(
|
|
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
|
|
upscale=netscale,
|
|
arch="clean",
|
|
channel_multiplier=2,
|
|
bg_upsampler=upsampler,
|
|
)
|
|
|
|
upscaled_imgs = []
|
|
for img in base_images:
|
|
img = numpy.array(img)
|
|
if use_face_enhancer:
|
|
_, _, enhance_result = face_enhancer.enhance(
|
|
img,
|
|
has_aligned=False,
|
|
only_center_face=False,
|
|
paste_back=True,
|
|
)
|
|
else:
|
|
enhance_result, _ = upsampler.enhance(img)
|
|
|
|
upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
|
|
|
|
return upscaled_imgs
|