format file
This commit is contained in:
parent
e8cf757dc0
commit
0b3f7b8821
@ -1,31 +1,32 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
|
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
|
||||||
import time
|
import time
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
||||||
# 用户反馈
|
# 用户反馈
|
||||||
chatbot.append([inputs_show_user, ""]); msg = '正常'
|
chatbot.append([inputs_show_user, ""])
|
||||||
|
msg = '正常'
|
||||||
yield chatbot, [], msg
|
yield chatbot, [], msg
|
||||||
executor = ThreadPoolExecutor(max_workers=16)
|
executor = ThreadPoolExecutor(max_workers=16)
|
||||||
mutable = ["", time.time()]
|
mutable = ["", time.time()]
|
||||||
future = executor.submit(lambda:
|
future = executor.submit(lambda:
|
||||||
predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
|
predict_no_ui_long_connection(
|
||||||
)
|
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
|
||||||
|
)
|
||||||
while True:
|
while True:
|
||||||
# yield一次以刷新前端页面
|
# yield一次以刷新前端页面
|
||||||
time.sleep(refresh_interval)
|
time.sleep(refresh_interval)
|
||||||
# “喂狗”(看门狗)
|
# “喂狗”(看门狗)
|
||||||
mutable[1] = time.time()
|
mutable[1] = time.time()
|
||||||
if future.done(): break
|
if future.done():
|
||||||
chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
|
break
|
||||||
|
chatbot[-1] = [chatbot[-1][0], mutable[0]]
|
||||||
|
msg = "正常"
|
||||||
yield chatbot, [], msg
|
yield chatbot, [], msg
|
||||||
return future.result()
|
return future.result()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
|
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
|
||||||
import time
|
import time
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
@ -35,34 +36,46 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
|
|||||||
executor = ThreadPoolExecutor(max_workers=max_workers)
|
executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||||
n_frag = len(inputs_array)
|
n_frag = len(inputs_array)
|
||||||
# 用户反馈
|
# 用户反馈
|
||||||
chatbot.append(["请开始多线程操作。", ""]); msg = '正常'
|
chatbot.append(["请开始多线程操作。", ""])
|
||||||
|
msg = '正常'
|
||||||
yield chatbot, [], msg
|
yield chatbot, [], msg
|
||||||
# 异步原子
|
# 异步原子
|
||||||
mutable = [["", time.time()] for _ in range(n_frag)]
|
mutable = [["", time.time()] for _ in range(n_frag)]
|
||||||
|
|
||||||
def _req_gpt(index, inputs, history, sys_prompt):
|
def _req_gpt(index, inputs, history, sys_prompt):
|
||||||
gpt_say = predict_no_ui_long_connection(
|
gpt_say = predict_no_ui_long_connection(
|
||||||
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
|
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[
|
||||||
|
index]
|
||||||
)
|
)
|
||||||
return gpt_say
|
return gpt_say
|
||||||
# 异步任务开始
|
# 异步任务开始
|
||||||
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
|
||||||
|
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
||||||
cnt = 0
|
cnt = 0
|
||||||
while True:
|
while True:
|
||||||
# yield一次以刷新前端页面
|
# yield一次以刷新前端页面
|
||||||
time.sleep(refresh_interval); cnt += 1
|
time.sleep(refresh_interval)
|
||||||
|
cnt += 1
|
||||||
worker_done = [h.done() for h in futures]
|
worker_done = [h.done() for h in futures]
|
||||||
if all(worker_done): executor.shutdown(); break
|
if all(worker_done):
|
||||||
|
executor.shutdown()
|
||||||
|
break
|
||||||
# 更好的UI视觉效果
|
# 更好的UI视觉效果
|
||||||
observe_win = []
|
observe_win = []
|
||||||
# 每个线程都要“喂狗”(看门狗)
|
# 每个线程都要“喂狗”(看门狗)
|
||||||
for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
|
for thread_index, _ in enumerate(worker_done):
|
||||||
|
mutable[thread_index][1] = time.time()
|
||||||
# 在前端打印些好玩的东西
|
# 在前端打印些好玩的东西
|
||||||
for thread_index, _ in enumerate(worker_done):
|
for thread_index, _ in enumerate(worker_done):
|
||||||
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
||||||
replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]"
|
replace('\n', '').replace('```', '...').replace(
|
||||||
|
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
|
||||||
observe_win.append(print_something_really_funny)
|
observe_win.append(print_something_really_funny)
|
||||||
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
|
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(
|
||||||
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
|
worker_done, observe_win)])
|
||||||
|
chatbot[-1] = [chatbot[-1][0],
|
||||||
|
f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
|
||||||
|
msg = "正常"
|
||||||
yield chatbot, [], msg
|
yield chatbot, [], msg
|
||||||
# 异步任务结束
|
# 异步任务结束
|
||||||
gpt_response_collection = []
|
gpt_response_collection = []
|
||||||
@ -72,23 +85,23 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
|
|||||||
return gpt_response_collection
|
return gpt_response_collection
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
||||||
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
||||||
if get_token_fn(txt_tocut) <= limit:
|
if get_token_fn(txt_tocut) <= limit:
|
||||||
return [txt_tocut]
|
return [txt_tocut]
|
||||||
else:
|
else:
|
||||||
lines = txt_tocut.split('\n')
|
lines = txt_tocut.split('\n')
|
||||||
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
||||||
estimated_line_cut = int(estimated_line_cut)
|
estimated_line_cut = int(estimated_line_cut)
|
||||||
for cnt in reversed(range(estimated_line_cut)):
|
for cnt in reversed(range(estimated_line_cut)):
|
||||||
if must_break_at_empty_line:
|
if must_break_at_empty_line:
|
||||||
if lines[cnt] != "": continue
|
if lines[cnt] != "":
|
||||||
|
continue
|
||||||
print(cnt)
|
print(cnt)
|
||||||
prev = "\n".join(lines[:cnt])
|
prev = "\n".join(lines[:cnt])
|
||||||
post = "\n".join(lines[cnt:])
|
post = "\n".join(lines[cnt:])
|
||||||
if get_token_fn(prev) < limit: break
|
if get_token_fn(prev) < limit:
|
||||||
|
break
|
||||||
if cnt == 0:
|
if cnt == 0:
|
||||||
print('what the fuck ?')
|
print('what the fuck ?')
|
||||||
raise RuntimeError("存在一行极长的文本!")
|
raise RuntimeError("存在一行极长的文本!")
|
||||||
@ -102,22 +115,25 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
|||||||
except RuntimeError:
|
except RuntimeError:
|
||||||
return cut(txt, must_break_at_empty_line=False)
|
return cut(txt, must_break_at_empty_line=False)
|
||||||
|
|
||||||
|
|
||||||
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
||||||
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
||||||
if get_token_fn(txt_tocut) <= limit:
|
if get_token_fn(txt_tocut) <= limit:
|
||||||
return [txt_tocut]
|
return [txt_tocut]
|
||||||
else:
|
else:
|
||||||
lines = txt_tocut.split('\n')
|
lines = txt_tocut.split('\n')
|
||||||
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
||||||
estimated_line_cut = int(estimated_line_cut)
|
estimated_line_cut = int(estimated_line_cut)
|
||||||
cnt = 0
|
cnt = 0
|
||||||
for cnt in reversed(range(estimated_line_cut)):
|
for cnt in reversed(range(estimated_line_cut)):
|
||||||
if must_break_at_empty_line:
|
if must_break_at_empty_line:
|
||||||
if lines[cnt] != "": continue
|
if lines[cnt] != "":
|
||||||
|
continue
|
||||||
print(cnt)
|
print(cnt)
|
||||||
prev = "\n".join(lines[:cnt])
|
prev = "\n".join(lines[:cnt])
|
||||||
post = "\n".join(lines[cnt:])
|
post = "\n".join(lines[cnt:])
|
||||||
if get_token_fn(prev) < limit: break
|
if get_token_fn(prev) < limit:
|
||||||
|
break
|
||||||
if cnt == 0:
|
if cnt == 0:
|
||||||
# print('what the fuck ? 存在一行极长的文本!')
|
# print('what the fuck ? 存在一行极长的文本!')
|
||||||
raise RuntimeError("存在一行极长的文本!")
|
raise RuntimeError("存在一行极长的文本!")
|
||||||
@ -135,4 +151,3 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
|||||||
# 这个中文的句号是故意的,作为一个标识而存在
|
# 这个中文的句号是故意的,作为一个标识而存在
|
||||||
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
|
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
|
||||||
return [r.replace('。\n', '.') for r in res]
|
return [r.replace('。\n', '.') for r in res]
|
||||||
|
|
||||||
|
@ -2,6 +2,7 @@ from toolbox import CatchException, report_execption, write_results_to_file
|
|||||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||||||
|
|
||||||
|
|
||||||
def read_and_clean_pdf_text(fp):
|
def read_and_clean_pdf_text(fp):
|
||||||
"""
|
"""
|
||||||
**输入参数说明**
|
**输入参数说明**
|
||||||
@ -20,7 +21,8 @@ def read_and_clean_pdf_text(fp):
|
|||||||
- 清除重复的换行
|
- 清除重复的换行
|
||||||
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
|
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
|
||||||
"""
|
"""
|
||||||
import fitz, re
|
import fitz
|
||||||
|
import re
|
||||||
import numpy as np
|
import numpy as np
|
||||||
# file_content = ""
|
# file_content = ""
|
||||||
with fitz.open(fp) as doc:
|
with fitz.open(fp) as doc:
|
||||||
@ -31,10 +33,13 @@ def read_and_clean_pdf_text(fp):
|
|||||||
text_areas = page.get_text("dict") # 获取页面上的文本信息
|
text_areas = page.get_text("dict") # 获取页面上的文本信息
|
||||||
|
|
||||||
# 块元提取 for each word segment with in line for each line cross-line words for each block
|
# 块元提取 for each word segment with in line for each line cross-line words for each block
|
||||||
meta_txt.extend( [ " ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t])
|
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
||||||
meta_font.extend([ np.mean( [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t])
|
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
|
||||||
if index==0:
|
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
|
||||||
page_one_meta = [" ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t]
|
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
|
||||||
|
if index == 0:
|
||||||
|
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
||||||
|
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
|
||||||
|
|
||||||
def 把字符太少的块清除为回车(meta_txt):
|
def 把字符太少的块清除为回车(meta_txt):
|
||||||
for index, block_txt in enumerate(meta_txt):
|
for index, block_txt in enumerate(meta_txt):
|
||||||
@ -61,8 +66,10 @@ def read_and_clean_pdf_text(fp):
|
|||||||
for _ in range(100):
|
for _ in range(100):
|
||||||
for index, block_txt in enumerate(meta_txt):
|
for index, block_txt in enumerate(meta_txt):
|
||||||
if starts_with_lowercase_word(block_txt):
|
if starts_with_lowercase_word(block_txt):
|
||||||
if meta_txt[index-1]!='\n': meta_txt[index-1] += ' '
|
if meta_txt[index-1] != '\n':
|
||||||
else: meta_txt[index-1] = ''
|
meta_txt[index-1] += ' '
|
||||||
|
else:
|
||||||
|
meta_txt[index-1] = ''
|
||||||
meta_txt[index-1] += meta_txt[index]
|
meta_txt[index-1] += meta_txt[index]
|
||||||
meta_txt[index] = '\n'
|
meta_txt[index] = '\n'
|
||||||
return meta_txt
|
return meta_txt
|
||||||
@ -72,13 +79,14 @@ def read_and_clean_pdf_text(fp):
|
|||||||
meta_txt = '\n'.join(meta_txt)
|
meta_txt = '\n'.join(meta_txt)
|
||||||
# 清除重复的换行
|
# 清除重复的换行
|
||||||
for _ in range(5):
|
for _ in range(5):
|
||||||
meta_txt = meta_txt.replace('\n\n','\n')
|
meta_txt = meta_txt.replace('\n\n', '\n')
|
||||||
|
|
||||||
# 换行 -> 双换行
|
# 换行 -> 双换行
|
||||||
meta_txt = meta_txt.replace('\n', '\n\n')
|
meta_txt = meta_txt.replace('\n', '\n\n')
|
||||||
|
|
||||||
return meta_txt, page_one_meta
|
return meta_txt, page_one_meta
|
||||||
|
|
||||||
|
|
||||||
@CatchException
|
@CatchException
|
||||||
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
|
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
|
||||||
import glob
|
import glob
|
||||||
@ -92,7 +100,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
|
|||||||
|
|
||||||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||||||
try:
|
try:
|
||||||
import fitz, tiktoken
|
import fitz
|
||||||
|
import tiktoken
|
||||||
except:
|
except:
|
||||||
report_execption(chatbot, history,
|
report_execption(chatbot, history,
|
||||||
a=f"解析项目: {txt}",
|
a=f"解析项目: {txt}",
|
||||||
@ -129,13 +138,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
|
|||||||
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
|
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
|
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
|
||||||
import time
|
|
||||||
import glob
|
|
||||||
import os
|
import os
|
||||||
import fitz
|
|
||||||
import tiktoken
|
import tiktoken
|
||||||
TOKEN_LIMIT_PER_FRAGMENT = 1600
|
TOKEN_LIMIT_PER_FRAGMENT = 1600
|
||||||
generated_conclusion_files = []
|
generated_conclusion_files = []
|
||||||
@ -145,14 +149,15 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
|
|||||||
# 递归地切割PDF文件
|
# 递归地切割PDF文件
|
||||||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||||||
enc = tiktoken.get_encoding("gpt2")
|
enc = tiktoken.get_encoding("gpt2")
|
||||||
get_token_num = lambda txt: len(enc.encode(txt))
|
def get_token_num(txt): return len(enc.encode(txt))
|
||||||
# 分解文本
|
# 分解文本
|
||||||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||||
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
||||||
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||||||
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
||||||
# 为了更好的效果,我们剥离Introduction之后的部分
|
# 为了更好的效果,我们剥离Introduction之后的部分
|
||||||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
paper_meta = page_one_fragments[0].split('introduction')[0].split(
|
||||||
|
'Introduction')[0].split('INTRODUCTION')[0]
|
||||||
# 单线,获取文章meta信息
|
# 单线,获取文章meta信息
|
||||||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||||||
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
||||||
@ -163,21 +168,25 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
|
|||||||
)
|
)
|
||||||
# 多线,翻译
|
# 多线,翻译
|
||||||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||||||
inputs_array = [f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
|
inputs_array=[
|
||||||
inputs_show_user_array = [f"" for _ in paper_fragments],
|
f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
|
||||||
|
inputs_show_user_array=[f"" for _ in paper_fragments],
|
||||||
top_p=top_p, temperature=temperature,
|
top_p=top_p, temperature=temperature,
|
||||||
chatbot=chatbot,
|
chatbot=chatbot,
|
||||||
history_array=[[paper_meta] for _ in paper_fragments],
|
history_array=[[paper_meta] for _ in paper_fragments],
|
||||||
sys_prompt_array=["请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
|
sys_prompt_array=[
|
||||||
max_workers=16 # OpenAI所允许的最大并行过载
|
"请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
|
||||||
|
max_workers=16 # OpenAI所允许的最大并行过载
|
||||||
)
|
)
|
||||||
|
|
||||||
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
|
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
|
||||||
final.extend(gpt_response_collection)
|
final.extend(gpt_response_collection)
|
||||||
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
||||||
res = write_results_to_file(final, file_name=create_report_file_name)
|
res = write_results_to_file(final, file_name=create_report_file_name)
|
||||||
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
|
generated_conclusion_files.append(
|
||||||
chatbot.append((f"{fp}完成了吗?", res)); msg = "完成"
|
f'./gpt_log/{create_report_file_name}')
|
||||||
|
chatbot.append((f"{fp}完成了吗?", res))
|
||||||
|
msg = "完成"
|
||||||
yield chatbot, history, msg
|
yield chatbot, history, msg
|
||||||
|
|
||||||
# 准备文件的下载
|
# 准备文件的下载
|
||||||
@ -185,8 +194,10 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
|
|||||||
for pdf_path in generated_conclusion_files:
|
for pdf_path in generated_conclusion_files:
|
||||||
# 重命名文件
|
# 重命名文件
|
||||||
rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
|
rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
|
||||||
if os.path.exists(rename_file): os.remove(rename_file)
|
if os.path.exists(rename_file):
|
||||||
shutil.copyfile(pdf_path, rename_file);
|
os.remove(rename_file)
|
||||||
if os.path.exists(pdf_path): os.remove(pdf_path)
|
shutil.copyfile(pdf_path, rename_file)
|
||||||
|
if os.path.exists(pdf_path):
|
||||||
|
os.remove(pdf_path)
|
||||||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
|
||||||
yield chatbot, history, msg
|
yield chatbot, history, msg
|
Loading…
x
Reference in New Issue
Block a user