format file
This commit is contained in:
		
							parent
							
								
									e8cf757dc0
								
							
						
					
					
						commit
						0b3f7b8821
					
				@ -1,31 +1,32 @@
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
 | 
			
		||||
    import time
 | 
			
		||||
    from concurrent.futures import ThreadPoolExecutor
 | 
			
		||||
    from request_llm.bridge_chatgpt import predict_no_ui_long_connection
 | 
			
		||||
    # 用户反馈
 | 
			
		||||
    chatbot.append([inputs_show_user, ""]); msg = '正常'
 | 
			
		||||
    chatbot.append([inputs_show_user, ""])
 | 
			
		||||
    msg = '正常'
 | 
			
		||||
    yield chatbot, [], msg
 | 
			
		||||
    executor = ThreadPoolExecutor(max_workers=16)
 | 
			
		||||
    mutable = ["", time.time()]
 | 
			
		||||
    future = executor.submit(lambda:
 | 
			
		||||
        predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
 | 
			
		||||
    )
 | 
			
		||||
                             predict_no_ui_long_connection(
 | 
			
		||||
                                 inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
 | 
			
		||||
                             )
 | 
			
		||||
    while True:
 | 
			
		||||
        # yield一次以刷新前端页面
 | 
			
		||||
        time.sleep(refresh_interval)
 | 
			
		||||
        # “喂狗”(看门狗)
 | 
			
		||||
        mutable[1] = time.time()
 | 
			
		||||
        if future.done(): break
 | 
			
		||||
        chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
 | 
			
		||||
        if future.done():
 | 
			
		||||
            break
 | 
			
		||||
        chatbot[-1] = [chatbot[-1][0], mutable[0]]
 | 
			
		||||
        msg = "正常"
 | 
			
		||||
        yield chatbot, [], msg
 | 
			
		||||
    return future.result()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
 | 
			
		||||
    import time
 | 
			
		||||
    from concurrent.futures import ThreadPoolExecutor
 | 
			
		||||
@ -35,34 +36,46 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
 | 
			
		||||
    executor = ThreadPoolExecutor(max_workers=max_workers)
 | 
			
		||||
    n_frag = len(inputs_array)
 | 
			
		||||
    # 用户反馈
 | 
			
		||||
    chatbot.append(["请开始多线程操作。", ""]); msg = '正常'
 | 
			
		||||
    chatbot.append(["请开始多线程操作。", ""])
 | 
			
		||||
    msg = '正常'
 | 
			
		||||
    yield chatbot, [], msg
 | 
			
		||||
    # 异步原子
 | 
			
		||||
    mutable = [["", time.time()] for _ in range(n_frag)]
 | 
			
		||||
 | 
			
		||||
    def _req_gpt(index, inputs, history, sys_prompt):
 | 
			
		||||
        gpt_say = predict_no_ui_long_connection(
 | 
			
		||||
            inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
 | 
			
		||||
            inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[
 | 
			
		||||
                index]
 | 
			
		||||
        )
 | 
			
		||||
        return gpt_say
 | 
			
		||||
    # 异步任务开始
 | 
			
		||||
    futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
 | 
			
		||||
    futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
 | 
			
		||||
        range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
 | 
			
		||||
    cnt = 0
 | 
			
		||||
    while True:
 | 
			
		||||
        # yield一次以刷新前端页面
 | 
			
		||||
        time.sleep(refresh_interval); cnt += 1
 | 
			
		||||
        time.sleep(refresh_interval)
 | 
			
		||||
        cnt += 1
 | 
			
		||||
        worker_done = [h.done() for h in futures]
 | 
			
		||||
        if all(worker_done): executor.shutdown(); break
 | 
			
		||||
        if all(worker_done):
 | 
			
		||||
            executor.shutdown()
 | 
			
		||||
            break
 | 
			
		||||
        # 更好的UI视觉效果
 | 
			
		||||
        observe_win = []
 | 
			
		||||
        # 每个线程都要“喂狗”(看门狗)
 | 
			
		||||
        for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
 | 
			
		||||
        for thread_index, _ in enumerate(worker_done):
 | 
			
		||||
            mutable[thread_index][1] = time.time()
 | 
			
		||||
        # 在前端打印些好玩的东西
 | 
			
		||||
        for thread_index, _ in enumerate(worker_done):
 | 
			
		||||
            print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
 | 
			
		||||
                replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]"
 | 
			
		||||
                replace('\n', '').replace('```', '...').replace(
 | 
			
		||||
                    ' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
 | 
			
		||||
            observe_win.append(print_something_really_funny)
 | 
			
		||||
        stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
 | 
			
		||||
        chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
 | 
			
		||||
        stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(
 | 
			
		||||
            worker_done, observe_win)])
 | 
			
		||||
        chatbot[-1] = [chatbot[-1][0],
 | 
			
		||||
                       f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
 | 
			
		||||
        msg = "正常"
 | 
			
		||||
        yield chatbot, [], msg
 | 
			
		||||
    # 异步任务结束
 | 
			
		||||
    gpt_response_collection = []
 | 
			
		||||
@ -72,23 +85,23 @@ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inp
 | 
			
		||||
    return gpt_response_collection
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
 | 
			
		||||
    def cut(txt_tocut, must_break_at_empty_line): # 递归
 | 
			
		||||
    def cut(txt_tocut, must_break_at_empty_line):  # 递归
 | 
			
		||||
        if get_token_fn(txt_tocut) <= limit:
 | 
			
		||||
            return [txt_tocut]
 | 
			
		||||
        else:
 | 
			
		||||
            lines = txt_tocut.split('\n')
 | 
			
		||||
            estimated_line_cut = limit / get_token_fn(txt_tocut)  * len(lines)
 | 
			
		||||
            estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
 | 
			
		||||
            estimated_line_cut = int(estimated_line_cut)
 | 
			
		||||
            for cnt in reversed(range(estimated_line_cut)):
 | 
			
		||||
                if must_break_at_empty_line:
 | 
			
		||||
                    if lines[cnt] != "": continue
 | 
			
		||||
                    if lines[cnt] != "":
 | 
			
		||||
                        continue
 | 
			
		||||
                print(cnt)
 | 
			
		||||
                prev = "\n".join(lines[:cnt])
 | 
			
		||||
                post = "\n".join(lines[cnt:])
 | 
			
		||||
                if get_token_fn(prev) < limit: break
 | 
			
		||||
                if get_token_fn(prev) < limit:
 | 
			
		||||
                    break
 | 
			
		||||
            if cnt == 0:
 | 
			
		||||
                print('what the fuck ?')
 | 
			
		||||
                raise RuntimeError("存在一行极长的文本!")
 | 
			
		||||
@ -102,22 +115,25 @@ def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
 | 
			
		||||
    except RuntimeError:
 | 
			
		||||
        return cut(txt, must_break_at_empty_line=False)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
 | 
			
		||||
    def cut(txt_tocut, must_break_at_empty_line): # 递归
 | 
			
		||||
    def cut(txt_tocut, must_break_at_empty_line):  # 递归
 | 
			
		||||
        if get_token_fn(txt_tocut) <= limit:
 | 
			
		||||
            return [txt_tocut]
 | 
			
		||||
        else:
 | 
			
		||||
            lines = txt_tocut.split('\n')
 | 
			
		||||
            estimated_line_cut = limit / get_token_fn(txt_tocut)  * len(lines)
 | 
			
		||||
            estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
 | 
			
		||||
            estimated_line_cut = int(estimated_line_cut)
 | 
			
		||||
            cnt = 0
 | 
			
		||||
            for cnt in reversed(range(estimated_line_cut)):
 | 
			
		||||
                if must_break_at_empty_line:
 | 
			
		||||
                    if lines[cnt] != "": continue
 | 
			
		||||
                    if lines[cnt] != "":
 | 
			
		||||
                        continue
 | 
			
		||||
                print(cnt)
 | 
			
		||||
                prev = "\n".join(lines[:cnt])
 | 
			
		||||
                post = "\n".join(lines[cnt:])
 | 
			
		||||
                if get_token_fn(prev) < limit: break
 | 
			
		||||
                if get_token_fn(prev) < limit:
 | 
			
		||||
                    break
 | 
			
		||||
            if cnt == 0:
 | 
			
		||||
                # print('what the fuck ? 存在一行极长的文本!')
 | 
			
		||||
                raise RuntimeError("存在一行极长的文本!")
 | 
			
		||||
@ -135,4 +151,3 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
 | 
			
		||||
            # 这个中文的句号是故意的,作为一个标识而存在
 | 
			
		||||
            res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
 | 
			
		||||
            return [r.replace('。\n', '.') for r in res]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -2,6 +2,7 @@ from toolbox import CatchException, report_execption, write_results_to_file
 | 
			
		||||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
 | 
			
		||||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def read_and_clean_pdf_text(fp):
 | 
			
		||||
    """
 | 
			
		||||
    **输入参数说明**
 | 
			
		||||
@ -20,7 +21,8 @@ def read_and_clean_pdf_text(fp):
 | 
			
		||||
    - 清除重复的换行
 | 
			
		||||
    - 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
 | 
			
		||||
    """
 | 
			
		||||
    import fitz, re
 | 
			
		||||
    import fitz
 | 
			
		||||
    import re
 | 
			
		||||
    import numpy as np
 | 
			
		||||
    # file_content = ""
 | 
			
		||||
    with fitz.open(fp) as doc:
 | 
			
		||||
@ -31,10 +33,13 @@ def read_and_clean_pdf_text(fp):
 | 
			
		||||
            text_areas = page.get_text("dict")  # 获取页面上的文本信息
 | 
			
		||||
 | 
			
		||||
            # 块元提取                           for each word segment with in line                       for each line         cross-line words                          for each block
 | 
			
		||||
            meta_txt.extend( [   " ".join(["".join(     [wtf['text'] for wtf in l['spans'] ])          for l in t['lines']   ]).replace('- ','')               for t in text_areas['blocks'] if 'lines' in t])
 | 
			
		||||
            meta_font.extend([   np.mean( [     np.mean([wtf['size'] for wtf in l['spans'] ])          for l in t['lines']   ])                                for t in text_areas['blocks'] if 'lines' in t])
 | 
			
		||||
            if index==0:
 | 
			
		||||
                page_one_meta = [" ".join(["".join(     [wtf['text'] for wtf in l['spans'] ])          for l in t['lines']   ]).replace('- ','')               for t in text_areas['blocks'] if 'lines' in t]
 | 
			
		||||
            meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
 | 
			
		||||
                '- ', '') for t in text_areas['blocks'] if 'lines' in t])
 | 
			
		||||
            meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
 | 
			
		||||
                             for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
 | 
			
		||||
            if index == 0:
 | 
			
		||||
                page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
 | 
			
		||||
                    '- ', '') for t in text_areas['blocks'] if 'lines' in t]
 | 
			
		||||
 | 
			
		||||
        def 把字符太少的块清除为回车(meta_txt):
 | 
			
		||||
            for index, block_txt in enumerate(meta_txt):
 | 
			
		||||
@ -61,8 +66,10 @@ def read_and_clean_pdf_text(fp):
 | 
			
		||||
            for _ in range(100):
 | 
			
		||||
                for index, block_txt in enumerate(meta_txt):
 | 
			
		||||
                    if starts_with_lowercase_word(block_txt):
 | 
			
		||||
                        if meta_txt[index-1]!='\n': meta_txt[index-1] += ' '
 | 
			
		||||
                        else: meta_txt[index-1] = ''
 | 
			
		||||
                        if meta_txt[index-1] != '\n':
 | 
			
		||||
                            meta_txt[index-1] += ' '
 | 
			
		||||
                        else:
 | 
			
		||||
                            meta_txt[index-1] = ''
 | 
			
		||||
                        meta_txt[index-1] += meta_txt[index]
 | 
			
		||||
                        meta_txt[index] = '\n'
 | 
			
		||||
            return meta_txt
 | 
			
		||||
@ -72,13 +79,14 @@ def read_and_clean_pdf_text(fp):
 | 
			
		||||
        meta_txt = '\n'.join(meta_txt)
 | 
			
		||||
        # 清除重复的换行
 | 
			
		||||
        for _ in range(5):
 | 
			
		||||
            meta_txt = meta_txt.replace('\n\n','\n')
 | 
			
		||||
            meta_txt = meta_txt.replace('\n\n', '\n')
 | 
			
		||||
 | 
			
		||||
        # 换行 -> 双换行
 | 
			
		||||
        meta_txt = meta_txt.replace('\n', '\n\n')
 | 
			
		||||
 | 
			
		||||
    return meta_txt, page_one_meta
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@CatchException
 | 
			
		||||
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
 | 
			
		||||
    import glob
 | 
			
		||||
@ -92,7 +100,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
 | 
			
		||||
 | 
			
		||||
    # 尝试导入依赖,如果缺少依赖,则给出安装建议
 | 
			
		||||
    try:
 | 
			
		||||
        import fitz, tiktoken
 | 
			
		||||
        import fitz
 | 
			
		||||
        import tiktoken
 | 
			
		||||
    except:
 | 
			
		||||
        report_execption(chatbot, history,
 | 
			
		||||
                         a=f"解析项目: {txt}",
 | 
			
		||||
@ -129,13 +138,8 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
 | 
			
		||||
    yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
 | 
			
		||||
    import time
 | 
			
		||||
    import glob
 | 
			
		||||
    import os
 | 
			
		||||
    import fitz
 | 
			
		||||
    import tiktoken
 | 
			
		||||
    TOKEN_LIMIT_PER_FRAGMENT = 1600
 | 
			
		||||
    generated_conclusion_files = []
 | 
			
		||||
@ -145,14 +149,15 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
 | 
			
		||||
        # 递归地切割PDF文件
 | 
			
		||||
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
 | 
			
		||||
        enc = tiktoken.get_encoding("gpt2")
 | 
			
		||||
        get_token_num = lambda txt: len(enc.encode(txt))
 | 
			
		||||
        def get_token_num(txt): return len(enc.encode(txt))
 | 
			
		||||
        # 分解文本
 | 
			
		||||
        paper_fragments    = breakdown_txt_to_satisfy_token_limit_for_pdf(
 | 
			
		||||
        paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
 | 
			
		||||
            txt=file_content,  get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
 | 
			
		||||
        page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
 | 
			
		||||
            txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
 | 
			
		||||
        # 为了更好的效果,我们剥离Introduction之后的部分
 | 
			
		||||
        paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
 | 
			
		||||
        paper_meta = page_one_fragments[0].split('introduction')[0].split(
 | 
			
		||||
            'Introduction')[0].split('INTRODUCTION')[0]
 | 
			
		||||
        # 单线,获取文章meta信息
 | 
			
		||||
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
 | 
			
		||||
            inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
 | 
			
		||||
@ -163,21 +168,25 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
 | 
			
		||||
        )
 | 
			
		||||
        # 多线,翻译
 | 
			
		||||
        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
 | 
			
		||||
            inputs_array = [f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
 | 
			
		||||
            inputs_show_user_array = [f""  for _ in paper_fragments],
 | 
			
		||||
            inputs_array=[
 | 
			
		||||
                f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
 | 
			
		||||
            inputs_show_user_array=[f"" for _ in paper_fragments],
 | 
			
		||||
            top_p=top_p, temperature=temperature,
 | 
			
		||||
            chatbot=chatbot,
 | 
			
		||||
            history_array=[[paper_meta] for _ in paper_fragments],
 | 
			
		||||
            sys_prompt_array=["请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
 | 
			
		||||
            max_workers=16 # OpenAI所允许的最大并行过载
 | 
			
		||||
            sys_prompt_array=[
 | 
			
		||||
                "请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
 | 
			
		||||
            max_workers=16  # OpenAI所允许的最大并行过载
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
 | 
			
		||||
        final.extend(gpt_response_collection)
 | 
			
		||||
        create_report_file_name = f"{os.path.basename(fp)}.trans.md"
 | 
			
		||||
        res = write_results_to_file(final, file_name=create_report_file_name)
 | 
			
		||||
        generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
 | 
			
		||||
        chatbot.append((f"{fp}完成了吗?", res)); msg = "完成"
 | 
			
		||||
        generated_conclusion_files.append(
 | 
			
		||||
            f'./gpt_log/{create_report_file_name}')
 | 
			
		||||
        chatbot.append((f"{fp}完成了吗?", res))
 | 
			
		||||
        msg = "完成"
 | 
			
		||||
        yield chatbot, history, msg
 | 
			
		||||
 | 
			
		||||
    # 准备文件的下载
 | 
			
		||||
@ -185,8 +194,10 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
 | 
			
		||||
    for pdf_path in generated_conclusion_files:
 | 
			
		||||
        # 重命名文件
 | 
			
		||||
        rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
 | 
			
		||||
        if os.path.exists(rename_file): os.remove(rename_file)
 | 
			
		||||
        shutil.copyfile(pdf_path, rename_file); 
 | 
			
		||||
        if os.path.exists(pdf_path): os.remove(pdf_path)
 | 
			
		||||
        if os.path.exists(rename_file):
 | 
			
		||||
            os.remove(rename_file)
 | 
			
		||||
        shutil.copyfile(pdf_path, rename_file)
 | 
			
		||||
        if os.path.exists(pdf_path):
 | 
			
		||||
            os.remove(pdf_path)
 | 
			
		||||
    chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
 | 
			
		||||
    yield chatbot, history, msg
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user