Version 3.74: Merge latest updates on dev branch (frontier) (#1621)
* Update version to 3.74 * Add support for Yi Model API (#1635) * 更新以支持零一万物模型 * 删除newbing * 修改config --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * Refactor function signatures in bridge files * fix qwen api change * rename and ref functions * rename and move some cookie functions * 增加haiku模型,新增endpoint配置说明 (#1626) * haiku added * 新增haiku,新增endpoint配置说明 * Haiku added * 将说明同步至最新Endpoint --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * private_upload目录下进行文件鉴权 (#1596) * private_upload目录下进行文件鉴权 * minor fastapi adjustment * Add logging functionality to enable saving conversation records * waiting to fix username retrieve * support 2rd web path * allow accessing default user dir --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * remove yaml deps * fix favicon * fix abs path auth problem * forget to write a return * add `dashscope` to deps * fix GHSA-v9q9-xj86-953p * 用户名重叠越权访问patch (#1681) * add cohere model api access * cohere + can_multi_thread * fix block user access(fail) * fix fastapi bug * change cohere api endpoint * explain version --------- Co-authored-by: Menghuan1918 <menghuan2003@outlook.com> Co-authored-by: Skyzayre <120616113+Skyzayre@users.noreply.github.com> Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
This commit is contained in:
parent
ae51a0e686
commit
bdd46c5dd1
@ -45,7 +45,7 @@ AVAIL_LLM_MODELS = ["gpt-4-1106-preview", "gpt-4-turbo-preview", "gpt-4-vision-p
|
|||||||
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
|
# "qwen-turbo", "qwen-plus", "qwen-max", "qwen-local",
|
||||||
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
# "moonshot-v1-128k", "moonshot-v1-32k", "moonshot-v1-8k",
|
||||||
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125"
|
# "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0125"
|
||||||
# "claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
# "claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229", "claude-2.1", "claude-instant-1.2",
|
||||||
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
# "moss", "llama2", "chatglm_onnx", "internlm", "jittorllms_pangualpha", "jittorllms_llama",
|
||||||
# "yi-34b-chat-0205", "yi-34b-chat-200k"
|
# "yi-34b-chat-0205", "yi-34b-chat-200k"
|
||||||
# ]
|
# ]
|
||||||
@ -157,7 +157,8 @@ ADD_WAIFU = False
|
|||||||
AUTHENTICATION = []
|
AUTHENTICATION = []
|
||||||
|
|
||||||
|
|
||||||
# 如果需要在二级路径下运行(常规情况下,不要修改!!)(需要配合修改main.py才能生效!)
|
# 如果需要在二级路径下运行(常规情况下,不要修改!!)
|
||||||
|
# (举例 CUSTOM_PATH = "/gpt_academic",可以让软件运行在 http://ip:port/gpt_academic/ 下。)
|
||||||
CUSTOM_PATH = "/"
|
CUSTOM_PATH = "/"
|
||||||
|
|
||||||
|
|
||||||
|
118
main.py
118
main.py
@ -13,6 +13,17 @@ help_menu_description = \
|
|||||||
</br></br>如何语音对话: 请阅读Wiki
|
</br></br>如何语音对话: 请阅读Wiki
|
||||||
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
</br></br>如何临时更换API_KEY: 在输入区输入临时API_KEY后提交(网页刷新后失效)"""
|
||||||
|
|
||||||
|
def enable_log(PATH_LOGGING):
|
||||||
|
import logging, uuid
|
||||||
|
admin_log_path = os.path.join(PATH_LOGGING, "admin")
|
||||||
|
os.makedirs(admin_log_path, exist_ok=True)
|
||||||
|
log_dir = os.path.join(admin_log_path, "chat_secrets.log")
|
||||||
|
try:logging.basicConfig(filename=log_dir, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||||
|
except:logging.basicConfig(filename=log_dir, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
||||||
|
# Disable logging output from the 'httpx' logger
|
||||||
|
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||||
|
print(f"所有对话记录将自动保存在本地目录{log_dir}, 请注意自我隐私保护哦!")
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
if gr.__version__ not in ['3.32.9']:
|
if gr.__version__ not in ['3.32.9']:
|
||||||
@ -31,18 +42,11 @@ def main():
|
|||||||
from check_proxy import get_current_version
|
from check_proxy import get_current_version
|
||||||
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
from themes.theme import adjust_theme, advanced_css, theme_declaration, js_code_clear, js_code_reset, js_code_show_or_hide, js_code_show_or_hide_group2
|
||||||
from themes.theme import js_code_for_css_changing, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
from themes.theme import js_code_for_css_changing, js_code_for_toggle_darkmode, js_code_for_persistent_cookie_init
|
||||||
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, init_cookie
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
title_html = f"<h1 align=\"center\">GPT 学术优化 {get_current_version()}</h1>{theme_declaration}"
|
||||||
|
|
||||||
# 对话记录, python 版本建议3.9+(越新越好)
|
# 对话、日志记录
|
||||||
import logging, uuid
|
enable_log(PATH_LOGGING)
|
||||||
os.makedirs(PATH_LOGGING, exist_ok=True)
|
|
||||||
chat_secrets_log = os.path.join(PATH_LOGGING, "chat_secrets.log")
|
|
||||||
try:logging.basicConfig(filename=chat_secrets_log, level=logging.INFO, encoding="utf-8", format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
|
||||||
except:logging.basicConfig(filename=chat_secrets_log, level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
|
|
||||||
# Disable logging output from the 'httpx' logger
|
|
||||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
|
||||||
print(f"所有对话记录将自动保存在本地目录 {chat_secrets_log}, 请注意自我隐私保护哦!")
|
|
||||||
|
|
||||||
# 一些普通功能模块
|
# 一些普通功能模块
|
||||||
from core_functional import get_core_functions
|
from core_functional import get_core_functions
|
||||||
@ -75,9 +79,9 @@ def main():
|
|||||||
cancel_handles = []
|
cancel_handles = []
|
||||||
customize_btns = {}
|
customize_btns = {}
|
||||||
predefined_btns = {}
|
predefined_btns = {}
|
||||||
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as demo:
|
with gr.Blocks(title="GPT 学术优化", theme=set_theme, analytics_enabled=False, css=advanced_css) as app_block:
|
||||||
gr.HTML(title_html)
|
gr.HTML(title_html)
|
||||||
secret_css, py_pickle_cookie = gr.Textbox(visible=False), gr.Textbox(visible=False)
|
secret_css, web_cookie_cache = gr.Textbox(visible=False), gr.Textbox(visible=False)
|
||||||
cookies = gr.State(load_chat_cookies())
|
cookies = gr.State(load_chat_cookies())
|
||||||
with gr_L1():
|
with gr_L1():
|
||||||
with gr_L2(scale=2, elem_id="gpt-chat"):
|
with gr_L2(scale=2, elem_id="gpt-chat"):
|
||||||
@ -199,64 +203,19 @@ def main():
|
|||||||
with gr.Column(scale=1, min_width=70):
|
with gr.Column(scale=1, min_width=70):
|
||||||
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
|
basic_fn_confirm = gr.Button("确认并保存", variant="primary"); basic_fn_confirm.style(size="sm")
|
||||||
basic_fn_clean = gr.Button("恢复默认", variant="primary"); basic_fn_clean.style(size="sm")
|
basic_fn_clean = gr.Button("恢复默认", variant="primary"); basic_fn_clean.style(size="sm")
|
||||||
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix, clean_up=False):
|
|
||||||
ret = {}
|
|
||||||
# 读取之前的自定义按钮
|
|
||||||
customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
|
|
||||||
# 更新新的自定义按钮
|
|
||||||
customize_fn_overwrite_.update({
|
|
||||||
basic_btn_dropdown_:
|
|
||||||
{
|
|
||||||
"Title":basic_fn_title,
|
|
||||||
"Prefix":basic_fn_prefix,
|
|
||||||
"Suffix":basic_fn_suffix,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
)
|
|
||||||
if clean_up:
|
|
||||||
customize_fn_overwrite_ = {}
|
|
||||||
cookies_.update(customize_fn_overwrite_) # 更新cookie
|
|
||||||
visible = (not clean_up) and (basic_fn_title != "")
|
|
||||||
if basic_btn_dropdown_ in customize_btns:
|
|
||||||
# 是自定义按钮,不是预定义按钮
|
|
||||||
ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
|
||||||
else:
|
|
||||||
# 是预定义按钮
|
|
||||||
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
|
||||||
ret.update({cookies: cookies_})
|
|
||||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
|
||||||
except: persistent_cookie_ = {}
|
|
||||||
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
|
|
||||||
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
|
|
||||||
ret.update({py_pickle_cookie: persistent_cookie_}) # write persistent cookie
|
|
||||||
return ret
|
|
||||||
|
|
||||||
|
from shared_utils.cookie_manager import assign_btn__fn_builder
|
||||||
|
assign_btn = assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)
|
||||||
# update btn
|
# update btn
|
||||||
h = basic_fn_confirm.click(assign_btn, [py_pickle_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
h = basic_fn_confirm.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix],
|
||||||
[py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
|
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||||
h.then(None, [py_pickle_cookie], None, _js="""(py_pickle_cookie)=>{setCookie("py_pickle_cookie", py_pickle_cookie, 365);}""")
|
h.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||||
# clean up btn
|
# clean up btn
|
||||||
h2 = basic_fn_clean.click(assign_btn, [py_pickle_cookie, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
|
h2 = basic_fn_clean.click(assign_btn, [web_cookie_cache, cookies, basic_btn_dropdown, basic_fn_title, basic_fn_prefix, basic_fn_suffix, gr.State(True)],
|
||||||
[py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()])
|
[web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()])
|
||||||
h2.then(None, [py_pickle_cookie], None, _js="""(py_pickle_cookie)=>{setCookie("py_pickle_cookie", py_pickle_cookie, 365);}""")
|
h2.then(None, [web_cookie_cache], None, _js="""(web_cookie_cache)=>{setCookie("web_cookie_cache", web_cookie_cache, 365);}""")
|
||||||
|
|
||||||
def persistent_cookie_reload(persistent_cookie_, cookies_):
|
|
||||||
ret = {}
|
|
||||||
for k in customize_btns:
|
|
||||||
ret.update({customize_btns[k]: gr.update(visible=False, value="")})
|
|
||||||
|
|
||||||
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
|
||||||
except: return ret
|
|
||||||
|
|
||||||
customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
|
|
||||||
cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
|
|
||||||
ret.update({cookies: cookies_})
|
|
||||||
|
|
||||||
for k,v in persistent_cookie_["custom_bnt"].items():
|
|
||||||
if v['Title'] == "": continue
|
|
||||||
if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
|
|
||||||
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
|
||||||
return ret
|
|
||||||
|
|
||||||
# 功能区显示开关与功能区的互动
|
# 功能区显示开关与功能区的互动
|
||||||
def fn_area_visibility(a):
|
def fn_area_visibility(a):
|
||||||
@ -376,11 +335,14 @@ def main():
|
|||||||
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
audio_mic.stream(deal_audio, inputs=[audio_mic, cookies])
|
||||||
|
|
||||||
|
|
||||||
demo.load(init_cookie, inputs=[cookies], outputs=[cookies])
|
app_block.load(assign_user_uuid, inputs=[cookies], outputs=[cookies])
|
||||||
demo.load(persistent_cookie_reload, inputs = [py_pickle_cookie, cookies],
|
|
||||||
outputs = [py_pickle_cookie, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
from shared_utils.cookie_manager import load_web_cookie_cache__fn_builder
|
||||||
demo.load(None, inputs=[], outputs=None, _js=f"""()=>init_frontend_with_cookies("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}")""") # 配置暗色主题或亮色主题
|
load_web_cookie_cache = load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)
|
||||||
demo.load(None, inputs=[gr.Textbox(LAYOUT, visible=False)], outputs=None, _js='(LAYOUT)=>{GptAcademicJavaScriptInit(LAYOUT);}')
|
app_block.load(load_web_cookie_cache, inputs = [web_cookie_cache, cookies],
|
||||||
|
outputs = [web_cookie_cache, cookies, *customize_btns.values(), *predefined_btns.values()], _js=js_code_for_persistent_cookie_init)
|
||||||
|
|
||||||
|
app_block.load(None, inputs=[], outputs=None, _js=f"""()=>GptAcademicJavaScriptInit("{DARK_MODE}","{INIT_SYS_PROMPT}","{ADD_WAIFU}","{LAYOUT}")""") # 配置暗色主题或亮色主题
|
||||||
|
|
||||||
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
# gradio的inbrowser触发不太稳定,回滚代码到原始的浏览器打开函数
|
||||||
def run_delayed_tasks():
|
def run_delayed_tasks():
|
||||||
@ -397,17 +359,13 @@ def main():
|
|||||||
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
threading.Thread(target=open_browser, name="open-browser", daemon=True).start() # 打开浏览器页面
|
||||||
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
threading.Thread(target=warm_up_mods, name="warm-up", daemon=True).start() # 预热tiktoken模块
|
||||||
|
|
||||||
|
# 运行一些异步任务:自动更新、打开浏览器页面、预热tiktoken模块
|
||||||
run_delayed_tasks()
|
run_delayed_tasks()
|
||||||
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
|
|
||||||
quiet=True,
|
# 最后,正式开始服务
|
||||||
server_name="0.0.0.0",
|
from shared_utils.fastapi_server import start_app
|
||||||
ssl_keyfile=None if SSL_KEYFILE == "" else SSL_KEYFILE,
|
start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE)
|
||||||
ssl_certfile=None if SSL_CERTFILE == "" else SSL_CERTFILE,
|
|
||||||
ssl_verify=False,
|
|
||||||
server_port=PORT,
|
|
||||||
favicon_path=os.path.join(os.path.dirname(__file__), "docs/logo.png"),
|
|
||||||
auth=AUTHENTICATION if len(AUTHENTICATION) != 0 else None,
|
|
||||||
blocked_paths=["config.py","__pycache__","config_private.py","docker-compose.yml","Dockerfile",f"{PATH_LOGGING}/admin", chat_secrets_log])
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
@ -34,6 +34,9 @@ from .bridge_google_gemini import predict_no_ui_long_connection as genai_noui
|
|||||||
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
from .bridge_zhipu import predict_no_ui_long_connection as zhipu_noui
|
||||||
from .bridge_zhipu import predict as zhipu_ui
|
from .bridge_zhipu import predict as zhipu_ui
|
||||||
|
|
||||||
|
from .bridge_cohere import predict as cohere_ui
|
||||||
|
from .bridge_cohere import predict_no_ui_long_connection as cohere_noui
|
||||||
|
|
||||||
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044']
|
||||||
|
|
||||||
class LazyloadTiktoken(object):
|
class LazyloadTiktoken(object):
|
||||||
@ -64,6 +67,7 @@ newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub"
|
|||||||
gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models"
|
gemini_endpoint = "https://generativelanguage.googleapis.com/v1beta/models"
|
||||||
claude_endpoint = "https://api.anthropic.com/v1/messages"
|
claude_endpoint = "https://api.anthropic.com/v1/messages"
|
||||||
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
|
yimodel_endpoint = "https://api.lingyiwanwu.com/v1/chat/completions"
|
||||||
|
cohere_endpoint = 'https://api.cohere.ai/v1/chat'
|
||||||
|
|
||||||
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
if not AZURE_ENDPOINT.endswith('/'): AZURE_ENDPOINT += '/'
|
||||||
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
azure_endpoint = AZURE_ENDPOINT + f'openai/deployments/{AZURE_ENGINE}/chat/completions?api-version=2023-05-15'
|
||||||
@ -82,6 +86,7 @@ if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[new
|
|||||||
if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint]
|
if gemini_endpoint in API_URL_REDIRECT: gemini_endpoint = API_URL_REDIRECT[gemini_endpoint]
|
||||||
if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint]
|
if claude_endpoint in API_URL_REDIRECT: claude_endpoint = API_URL_REDIRECT[claude_endpoint]
|
||||||
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
if yimodel_endpoint in API_URL_REDIRECT: yimodel_endpoint = API_URL_REDIRECT[yimodel_endpoint]
|
||||||
|
if cohere_endpoint in API_URL_REDIRECT: cohere_endpoint = API_URL_REDIRECT[cohere_endpoint]
|
||||||
|
|
||||||
# 获取tokenizer
|
# 获取tokenizer
|
||||||
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo")
|
||||||
@ -310,6 +315,18 @@ model_info = {
|
|||||||
"tokenizer": tokenizer_gpt35,
|
"tokenizer": tokenizer_gpt35,
|
||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
|
|
||||||
|
# cohere
|
||||||
|
"cohere-command-r-plus": {
|
||||||
|
"fn_with_ui": cohere_ui,
|
||||||
|
"fn_without_ui": cohere_noui,
|
||||||
|
"can_multi_thread": True,
|
||||||
|
"endpoint": cohere_endpoint,
|
||||||
|
"max_token": 1024 * 4,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
|
||||||
}
|
}
|
||||||
# -=-=-=-=-=-=- 月之暗面 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 月之暗面 -=-=-=-=-=-=-
|
||||||
from request_llms.bridge_moonshot import predict as moonshot_ui
|
from request_llms.bridge_moonshot import predict as moonshot_ui
|
||||||
@ -359,7 +376,7 @@ for model in AVAIL_LLM_MODELS:
|
|||||||
|
|
||||||
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
|
# -=-=-=-=-=-=- 以下部分是新加入的模型,可能附带额外依赖 -=-=-=-=-=-=-
|
||||||
# claude家族
|
# claude家族
|
||||||
claude_models = ["claude-instant-1.2","claude-2.0","claude-2.1","claude-3-sonnet-20240229","claude-3-opus-20240229"]
|
claude_models = ["claude-instant-1.2","claude-2.0","claude-2.1","claude-3-haiku-20240307","claude-3-sonnet-20240229","claude-3-opus-20240229"]
|
||||||
if any(item in claude_models for item in AVAIL_LLM_MODELS):
|
if any(item in claude_models for item in AVAIL_LLM_MODELS):
|
||||||
from .bridge_claude import predict_no_ui_long_connection as claude_noui
|
from .bridge_claude import predict_no_ui_long_connection as claude_noui
|
||||||
from .bridge_claude import predict as claude_ui
|
from .bridge_claude import predict as claude_ui
|
||||||
@ -393,6 +410,16 @@ if any(item in claude_models for item in AVAIL_LLM_MODELS):
|
|||||||
"token_cnt": get_token_num_gpt35,
|
"token_cnt": get_token_num_gpt35,
|
||||||
},
|
},
|
||||||
})
|
})
|
||||||
|
model_info.update({
|
||||||
|
"claude-3-haiku-20240307": {
|
||||||
|
"fn_with_ui": claude_ui,
|
||||||
|
"fn_without_ui": claude_noui,
|
||||||
|
"endpoint": claude_endpoint,
|
||||||
|
"max_token": 200000,
|
||||||
|
"tokenizer": tokenizer_gpt35,
|
||||||
|
"token_cnt": get_token_num_gpt35,
|
||||||
|
},
|
||||||
|
})
|
||||||
model_info.update({
|
model_info.update({
|
||||||
"claude-3-sonnet-20240229": {
|
"claude-3-sonnet-20240229": {
|
||||||
"fn_with_ui": claude_ui,
|
"fn_with_ui": claude_ui,
|
||||||
@ -789,7 +816,7 @@ def LLM_CATCH_EXCEPTION(f):
|
|||||||
"""
|
"""
|
||||||
装饰器函数,将错误显示出来
|
装饰器函数,将错误显示出来
|
||||||
"""
|
"""
|
||||||
def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience):
|
def decorated(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list, console_slience:bool):
|
||||||
try:
|
try:
|
||||||
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@ -799,9 +826,9 @@ def LLM_CATCH_EXCEPTION(f):
|
|||||||
return decorated
|
return decorated
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list, sys_prompt:str, observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至LLM,等待回复,一次性完成,不显示中间过程。但内部(尽可能地)用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
是本次问询的输入
|
是本次问询的输入
|
||||||
sys_prompt:
|
sys_prompt:
|
||||||
@ -819,7 +846,6 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
model = llm_kwargs['llm_model']
|
model = llm_kwargs['llm_model']
|
||||||
n_model = 1
|
n_model = 1
|
||||||
if '&' not in model:
|
if '&' not in model:
|
||||||
assert not model.startswith("tgui"), "TGUI不支持函数插件的实现"
|
|
||||||
|
|
||||||
# 如果只询问1个大语言模型:
|
# 如果只询问1个大语言模型:
|
||||||
method = model_info[model]["fn_without_ui"]
|
method = model_info[model]["fn_without_ui"]
|
||||||
@ -880,15 +906,22 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, obser
|
|||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, *args, **kwargs):
|
def predict(inputs:str, llm_kwargs:dict, *args, **kwargs):
|
||||||
"""
|
"""
|
||||||
发送至LLM,流式获取输出。
|
发送至LLM,流式获取输出。
|
||||||
用于基础的对话功能。
|
用于基础的对话功能。
|
||||||
inputs 是本次问询的输入
|
|
||||||
top_p, temperature是LLM的内部调优参数
|
完整参数列表:
|
||||||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
predict(
|
||||||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
inputs:str, # 是本次问询的输入
|
||||||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
llm_kwargs:dict, # 是LLM的内部调优参数
|
||||||
|
plugin_kwargs:dict, # 是插件的内部参数
|
||||||
|
chatbot:ChatBotWithCookies, # 原样传递,负责向用户前端展示对话,兼顾前端状态的功能
|
||||||
|
history:list=[], # 是之前的对话列表
|
||||||
|
system_prompt:str='', # 系统静默prompt
|
||||||
|
stream:bool=True, # 是否流式输出(已弃用)
|
||||||
|
additional_fn:str=None # 基础功能区按钮的附加功能
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
inputs = apply_gpt_academic_string_mask(inputs, mode="show_llm")
|
||||||
|
@ -137,7 +137,8 @@ class GetGLMFTHandle(Process):
|
|||||||
global glmft_handle
|
global glmft_handle
|
||||||
glmft_handle = None
|
glmft_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
@ -23,6 +23,7 @@ import random
|
|||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||||
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||||
|
|
||||||
@ -69,7 +70,7 @@ def verify_endpoint(endpoint):
|
|||||||
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
return endpoint
|
return endpoint
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
inputs:
|
inputs:
|
||||||
@ -147,7 +148,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
"""
|
"""
|
||||||
发送至chatGPT,流式获取输出。
|
发送至chatGPT,流式获取输出。
|
||||||
用于基础的对话功能。
|
用于基础的对话功能。
|
||||||
|
@ -13,11 +13,11 @@ import logging
|
|||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path
|
|
||||||
import json
|
import json
|
||||||
import requests
|
import requests
|
||||||
|
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
|
||||||
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
|
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
|
||||||
Claude_3_Models = ["claude-3-sonnet-20240229", "claude-3-opus-20240229"]
|
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
|
||||||
|
|
||||||
# config_private.py放自己的秘密如API和代理网址
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
@ -116,7 +116,7 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
if need_to_pass:
|
if need_to_pass:
|
||||||
pass
|
pass
|
||||||
elif is_last_chunk:
|
elif is_last_chunk:
|
||||||
logging.info(f'[response] {result}')
|
# logging.info(f'[response] {result}')
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||||
@ -216,7 +216,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
if need_to_pass:
|
if need_to_pass:
|
||||||
pass
|
pass
|
||||||
elif is_last_chunk:
|
elif is_last_chunk:
|
||||||
logging.info(f'[response] {gpt_replying_buffer}')
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
# logging.info(f'[response] {gpt_replying_buffer}')
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||||||
|
328
request_llms/bridge_cohere.py
Normal file
328
request_llms/bridge_cohere.py
Normal file
@ -0,0 +1,328 @@
|
|||||||
|
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||||||
|
|
||||||
|
"""
|
||||||
|
该文件中主要包含三个函数
|
||||||
|
|
||||||
|
不具备多线程能力的函数:
|
||||||
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||||||
|
|
||||||
|
具备多线程调用能力的函数
|
||||||
|
2. predict_no_ui_long_connection:支持多线程
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
import gradio as gr
|
||||||
|
import logging
|
||||||
|
import traceback
|
||||||
|
import requests
|
||||||
|
import importlib
|
||||||
|
import random
|
||||||
|
|
||||||
|
# config_private.py放自己的秘密如API和代理网址
|
||||||
|
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||||||
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history
|
||||||
|
from toolbox import trimmed_format_exc, is_the_upload_folder, read_one_api_model_name, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
|
||||||
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')
|
||||||
|
|
||||||
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||||||
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||||||
|
|
||||||
|
def get_full_error(chunk, stream_response):
|
||||||
|
"""
|
||||||
|
获取完整的从Cohere返回的报错
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk += next(stream_response)
|
||||||
|
except:
|
||||||
|
break
|
||||||
|
return chunk
|
||||||
|
|
||||||
|
def decode_chunk(chunk):
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
chunkjson = None
|
||||||
|
has_choices = False
|
||||||
|
choice_valid = False
|
||||||
|
has_content = False
|
||||||
|
has_role = False
|
||||||
|
try:
|
||||||
|
chunkjson = json.loads(chunk_decoded)
|
||||||
|
has_choices = 'choices' in chunkjson
|
||||||
|
if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
|
||||||
|
if has_choices and choice_valid: has_content = ("content" in chunkjson['choices'][0]["delta"])
|
||||||
|
if has_content: has_content = (chunkjson['choices'][0]["delta"]["content"] is not None)
|
||||||
|
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role
|
||||||
|
|
||||||
|
from functools import lru_cache
|
||||||
|
@lru_cache(maxsize=32)
|
||||||
|
def verify_endpoint(endpoint):
|
||||||
|
"""
|
||||||
|
检查endpoint是否可用
|
||||||
|
"""
|
||||||
|
if "你亲手写的api名称" in endpoint:
|
||||||
|
raise ValueError("Endpoint不正确, 请检查AZURE_ENDPOINT的配置! 当前的Endpoint为:" + endpoint)
|
||||||
|
return endpoint
|
||||||
|
|
||||||
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=None, console_slience:bool=False):
|
||||||
|
"""
|
||||||
|
发送,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||||||
|
inputs:
|
||||||
|
是本次问询的输入
|
||||||
|
sys_prompt:
|
||||||
|
系统静默prompt
|
||||||
|
llm_kwargs:
|
||||||
|
内部调优参数
|
||||||
|
history:
|
||||||
|
是之前的对话列表
|
||||||
|
observe_window = None:
|
||||||
|
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||||||
|
"""
|
||||||
|
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=False
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||||||
|
except requests.exceptions.ReadTimeout as e:
|
||||||
|
retry += 1
|
||||||
|
traceback.print_exc()
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||||||
|
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
result = ''
|
||||||
|
json_data = None
|
||||||
|
while True:
|
||||||
|
try: chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||||||
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
if chunkjson['event_type'] == 'stream-start': continue
|
||||||
|
if chunkjson['event_type'] == 'text-generation':
|
||||||
|
result += chunkjson["text"]
|
||||||
|
if not console_slience: print(chunkjson["text"], end='')
|
||||||
|
if observe_window is not None:
|
||||||
|
# 观测窗,把已经获取的数据显示出去
|
||||||
|
if len(observe_window) >= 1:
|
||||||
|
observe_window[0] += chunkjson["text"]
|
||||||
|
# 看门狗,如果超过期限没有喂狗,则终止
|
||||||
|
if len(observe_window) >= 2:
|
||||||
|
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||||||
|
raise RuntimeError("用户取消了程序。")
|
||||||
|
if chunkjson['event_type'] == 'stream-end': break
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
|
"""
|
||||||
|
发送至chatGPT,流式获取输出。
|
||||||
|
用于基础的对话功能。
|
||||||
|
inputs 是本次问询的输入
|
||||||
|
top_p, temperature是chatGPT的内部调优参数
|
||||||
|
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||||||
|
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||||||
|
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||||||
|
"""
|
||||||
|
# if is_any_api_key(inputs):
|
||||||
|
# chatbot._cookies['api_key'] = inputs
|
||||||
|
# chatbot.append(("输入已识别为Cohere的api_key", what_keys(inputs)))
|
||||||
|
# yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
|
||||||
|
# return
|
||||||
|
# elif not is_any_api_key(chatbot._cookies['api_key']):
|
||||||
|
# chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
|
||||||
|
# yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
|
||||||
|
# return
|
||||||
|
|
||||||
|
user_input = inputs
|
||||||
|
if additional_fn is not None:
|
||||||
|
from core_functional import handle_core_functionality
|
||||||
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
|
||||||
|
raw_input = inputs
|
||||||
|
# logging.info(f'[raw_input] {raw_input}')
|
||||||
|
chatbot.append((inputs, ""))
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||||||
|
|
||||||
|
# check mis-behavior
|
||||||
|
if is_the_upload_folder(user_input):
|
||||||
|
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
time.sleep(2)
|
||||||
|
|
||||||
|
try:
|
||||||
|
headers, payload = generate_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||||||
|
except RuntimeError as e:
|
||||||
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 检查endpoint是否合法
|
||||||
|
try:
|
||||||
|
from .bridge_all import model_info
|
||||||
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
|
||||||
|
except:
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (inputs, tb_str)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
history.append(inputs); history.append("")
|
||||||
|
|
||||||
|
retry = 0
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# make a POST request to the API endpoint, stream=True
|
||||||
|
response = requests.post(endpoint, headers=headers, proxies=proxies,
|
||||||
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||||||
|
except:
|
||||||
|
retry += 1
|
||||||
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||||||
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
|
||||||
|
if retry > MAX_RETRY: raise TimeoutError
|
||||||
|
|
||||||
|
gpt_replying_buffer = ""
|
||||||
|
|
||||||
|
is_head_of_the_stream = True
|
||||||
|
if stream:
|
||||||
|
stream_response = response.iter_lines()
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = next(stream_response)
|
||||||
|
except StopIteration:
|
||||||
|
# 非Cohere官方接口的出现这样的报错,Cohere和API2D不会走这里
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
# 其他情况,直接返回报错
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="非Cohere官方接口返回了错误:" + chunk.decode()) # 刷新界面
|
||||||
|
return
|
||||||
|
|
||||||
|
# 提前读取一些信息 (用于判断异常)
|
||||||
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)
|
||||||
|
|
||||||
|
if chunkjson:
|
||||||
|
try:
|
||||||
|
if chunkjson['event_type'] == 'stream-start':
|
||||||
|
continue
|
||||||
|
if chunkjson['event_type'] == 'text-generation':
|
||||||
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson["text"]
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
if chunkjson['event_type'] == 'stream-end':
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||||||
|
history[-1] = gpt_replying_buffer
|
||||||
|
chatbot[-1] = (history[-2], history[-1])
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
|
||||||
|
break
|
||||||
|
except Exception as e:
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||||||
|
chunk = get_full_error(chunk, stream_response)
|
||||||
|
chunk_decoded = chunk.decode()
|
||||||
|
error_msg = chunk_decoded
|
||||||
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg)
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||||||
|
print(error_msg)
|
||||||
|
return
|
||||||
|
|
||||||
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg):
|
||||||
|
from .bridge_all import model_info
|
||||||
|
Cohere_website = ' 请登录Cohere查看详情 https://platform.Cohere.com/signup'
|
||||||
|
if "reduce the length" in error_msg:
|
||||||
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
|
||||||
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
|
||||||
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
|
||||||
|
elif "does not exist" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
|
||||||
|
elif "Incorrect API key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. Cohere以提供了不正确的API_KEY为由, 拒绝服务. " + Cohere_website)
|
||||||
|
elif "exceeded your current quota" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. Cohere以账户额度不足为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "account is not active" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "associated with a deactivated account" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "API key has been deactivated" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. Cohere以账户失效为由, 拒绝服务." + Cohere_website)
|
||||||
|
elif "bad forward key" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
|
||||||
|
elif "Not enough point" in error_msg:
|
||||||
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
|
||||||
|
else:
|
||||||
|
from toolbox import regular_txt_to_markdown
|
||||||
|
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||||||
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
|
||||||
|
return chatbot, history
|
||||||
|
|
||||||
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||||||
|
"""
|
||||||
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||||||
|
"""
|
||||||
|
# if not is_any_api_key(llm_kwargs['api_key']):
|
||||||
|
# raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")
|
||||||
|
|
||||||
|
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
|
||||||
|
|
||||||
|
headers = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Authorization": f"Bearer {api_key}"
|
||||||
|
}
|
||||||
|
if API_ORG.startswith('org-'): headers.update({"Cohere-Organization": API_ORG})
|
||||||
|
if llm_kwargs['llm_model'].startswith('azure-'):
|
||||||
|
headers.update({"api-key": api_key})
|
||||||
|
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
|
||||||
|
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
|
||||||
|
headers.update({"api-key": azure_api_key_unshared})
|
||||||
|
|
||||||
|
conversation_cnt = len(history) // 2
|
||||||
|
|
||||||
|
messages = [{"role": "SYSTEM", "message": system_prompt}]
|
||||||
|
if conversation_cnt:
|
||||||
|
for index in range(0, 2*conversation_cnt, 2):
|
||||||
|
what_i_have_asked = {}
|
||||||
|
what_i_have_asked["role"] = "USER"
|
||||||
|
what_i_have_asked["message"] = history[index]
|
||||||
|
what_gpt_answer = {}
|
||||||
|
what_gpt_answer["role"] = "CHATBOT"
|
||||||
|
what_gpt_answer["message"] = history[index+1]
|
||||||
|
if what_i_have_asked["message"] != "":
|
||||||
|
if what_gpt_answer["message"] == "": continue
|
||||||
|
if what_gpt_answer["message"] == timeout_bot_msg: continue
|
||||||
|
messages.append(what_i_have_asked)
|
||||||
|
messages.append(what_gpt_answer)
|
||||||
|
else:
|
||||||
|
messages[-1]['message'] = what_gpt_answer['message']
|
||||||
|
|
||||||
|
model = llm_kwargs['llm_model']
|
||||||
|
if model.startswith('cohere-'): model = model[len('cohere-'):]
|
||||||
|
payload = {
|
||||||
|
"model": model,
|
||||||
|
"message": inputs,
|
||||||
|
"chat_history": messages,
|
||||||
|
"temperature": llm_kwargs['temperature'], # 1.0,
|
||||||
|
"top_p": llm_kwargs['top_p'], # 1.0,
|
||||||
|
"n": 1,
|
||||||
|
"stream": stream,
|
||||||
|
"presence_penalty": 0,
|
||||||
|
"frequency_penalty": 0,
|
||||||
|
}
|
||||||
|
|
||||||
|
return headers,payload
|
||||||
|
|
||||||
|
|
@ -7,6 +7,7 @@ import re
|
|||||||
import os
|
import os
|
||||||
import time
|
import time
|
||||||
from request_llms.com_google import GoogleChatInit
|
from request_llms.com_google import GoogleChatInit
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
|
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
|
||||||
|
|
||||||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||||||
@ -44,7 +45,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
return gpt_replying_buffer
|
return gpt_replying_buffer
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
# 检查API_KEY
|
# 检查API_KEY
|
||||||
if get_conf("GEMINI_API_KEY") == "":
|
if get_conf("GEMINI_API_KEY") == "":
|
||||||
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
|
|
||||||
from transformers import AutoModel, AutoTokenizer
|
|
||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
import importlib
|
||||||
from toolbox import update_ui, get_conf
|
from toolbox import update_ui, get_conf
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
|
||||||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
@ -106,7 +106,8 @@ class GetGLMHandle(Process):
|
|||||||
global llama_glm_handle
|
global llama_glm_handle
|
||||||
llama_glm_handle = None
|
llama_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
|
|
||||||
from transformers import AutoModel, AutoTokenizer
|
|
||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
import importlib
|
import importlib
|
||||||
from toolbox import update_ui, get_conf
|
from toolbox import update_ui, get_conf
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
|
||||||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
@ -106,7 +106,8 @@ class GetGLMHandle(Process):
|
|||||||
global pangu_glm_handle
|
global pangu_glm_handle
|
||||||
pangu_glm_handle = None
|
pangu_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
@ -106,7 +106,8 @@ class GetGLMHandle(Process):
|
|||||||
global rwkv_glm_handle
|
global rwkv_glm_handle
|
||||||
rwkv_glm_handle = None
|
rwkv_glm_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
@ -8,6 +8,7 @@ import time
|
|||||||
import logging
|
import logging
|
||||||
|
|
||||||
from toolbox import get_conf, update_ui, log_chat
|
from toolbox import get_conf, update_ui, log_chat
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
|
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
@ -146,7 +147,8 @@ def msg_handle_error(llm_kwargs, chunk_decoded):
|
|||||||
return error_msg
|
return error_msg
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
chatbot.append([inputs, ""])
|
chatbot.append([inputs, ""])
|
||||||
|
|
||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
|
@ -171,7 +171,8 @@ class GetGLMHandle(Process):
|
|||||||
global moss_handle
|
global moss_handle
|
||||||
moss_handle = None
|
moss_handle = None
|
||||||
#################################################################################
|
#################################################################################
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
多线程方法
|
多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
@ -117,7 +117,8 @@ def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
|
|||||||
raise RuntimeError(dec['error_msg'])
|
raise RuntimeError(dec['error_msg'])
|
||||||
|
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
@ -5,7 +5,8 @@ from toolbox import check_packages, report_exception
|
|||||||
|
|
||||||
model_name = 'Qwen'
|
model_name = 'Qwen'
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@ -47,6 +48,8 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
if additional_fn is not None:
|
if additional_fn is not None:
|
||||||
from core_functional import handle_core_functionality
|
from core_functional import handle_core_functionality
|
||||||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||||||
|
chatbot[-1] = (inputs, "")
|
||||||
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
|
|
||||||
# 开始接收回复
|
# 开始接收回复
|
||||||
from .com_qwenapi import QwenRequestInstance
|
from .com_qwenapi import QwenRequestInstance
|
||||||
|
@ -9,7 +9,8 @@ def validate_key():
|
|||||||
if YUNQUE_SECRET_KEY == '': return False
|
if YUNQUE_SECRET_KEY == '': return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐ 多线程方法
|
⭐ 多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
@ -13,7 +13,8 @@ def validate_key():
|
|||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
from toolbox import update_ui, get_conf, update_ui_lastest_msg
|
from toolbox import update_ui, get_conf, update_ui_lastest_msg, log_chat
|
||||||
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
from toolbox import check_packages, report_exception, have_any_recent_upload_image_files
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
|
|
||||||
model_name = '智谱AI大模型'
|
model_name = '智谱AI大模型'
|
||||||
zhipuai_default_model = 'glm-4'
|
zhipuai_default_model = 'glm-4'
|
||||||
@ -16,7 +17,8 @@ def make_media_input(inputs, image_paths):
|
|||||||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||||||
return inputs
|
return inputs
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="",
|
||||||
|
observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
⭐多线程方法
|
⭐多线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@ -42,7 +44,8 @@ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="",
|
|||||||
return response
|
return response
|
||||||
|
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
"""
|
"""
|
||||||
⭐单线程方法
|
⭐单线程方法
|
||||||
函数的说明请见 request_llms/bridge_all.py
|
函数的说明请见 request_llms/bridge_all.py
|
||||||
@ -90,4 +93,5 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
|
|||||||
chatbot[-1] = [inputs, response]
|
chatbot[-1] = [inputs, response]
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
||||||
history.extend([inputs, response])
|
history.extend([inputs, response])
|
||||||
|
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=response)
|
||||||
yield from update_ui(chatbot=chatbot, history=history)
|
yield from update_ui(chatbot=chatbot, history=history)
|
@ -1,6 +1,7 @@
|
|||||||
import time
|
import time
|
||||||
import threading
|
import threading
|
||||||
from toolbox import update_ui, Singleton
|
from toolbox import update_ui, Singleton
|
||||||
|
from toolbox import ChatBotWithCookies
|
||||||
from multiprocessing import Process, Pipe
|
from multiprocessing import Process, Pipe
|
||||||
from contextlib import redirect_stdout
|
from contextlib import redirect_stdout
|
||||||
from request_llms.queued_pipe import create_queue_pipe
|
from request_llms.queued_pipe import create_queue_pipe
|
||||||
@ -214,7 +215,7 @@ class LocalLLMHandle(Process):
|
|||||||
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
|
||||||
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||||||
|
|
||||||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
def predict_no_ui_long_connection(inputs:str, llm_kwargs:dict, history:list=[], sys_prompt:str="", observe_window:list=[], console_slience:bool=False):
|
||||||
"""
|
"""
|
||||||
refer to request_llms/bridge_all.py
|
refer to request_llms/bridge_all.py
|
||||||
"""
|
"""
|
||||||
@ -260,7 +261,8 @@ def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='cla
|
|||||||
raise RuntimeError("程序终止。")
|
raise RuntimeError("程序终止。")
|
||||||
return response
|
return response
|
||||||
|
|
||||||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
|
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||||||
|
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||||||
"""
|
"""
|
||||||
refer to request_llms/bridge_all.py
|
refer to request_llms/bridge_all.py
|
||||||
"""
|
"""
|
||||||
|
@ -17,6 +17,7 @@ prompt_toolkit
|
|||||||
latex2mathml
|
latex2mathml
|
||||||
python-docx
|
python-docx
|
||||||
mdtex2html
|
mdtex2html
|
||||||
|
dashscope
|
||||||
pyautogen
|
pyautogen
|
||||||
colorama
|
colorama
|
||||||
Markdown
|
Markdown
|
||||||
|
@ -1 +1,61 @@
|
|||||||
|
from typing import Callable
|
||||||
|
def load_web_cookie_cache__fn_builder(customize_btns, cookies, predefined_btns)->Callable:
|
||||||
|
def load_web_cookie_cache(persistent_cookie_, cookies_):
|
||||||
|
import gradio as gr
|
||||||
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
|
|
||||||
|
ret = {}
|
||||||
|
for k in customize_btns:
|
||||||
|
ret.update({customize_btns[k]: gr.update(visible=False, value="")})
|
||||||
|
|
||||||
|
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||||
|
except: return ret
|
||||||
|
|
||||||
|
customize_fn_overwrite_ = persistent_cookie_.get("custom_bnt", {})
|
||||||
|
cookies_['customize_fn_overwrite'] = customize_fn_overwrite_
|
||||||
|
ret.update({cookies: cookies_})
|
||||||
|
|
||||||
|
for k,v in persistent_cookie_["custom_bnt"].items():
|
||||||
|
if v['Title'] == "": continue
|
||||||
|
if k in customize_btns: ret.update({customize_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||||
|
else: ret.update({predefined_btns[k]: gr.update(visible=True, value=v['Title'])})
|
||||||
|
return ret
|
||||||
|
return load_web_cookie_cache
|
||||||
|
|
||||||
|
|
||||||
|
def assign_btn__fn_builder(customize_btns, predefined_btns, cookies, web_cookie_cache)->Callable:
|
||||||
|
def assign_btn(persistent_cookie_, cookies_, basic_btn_dropdown_, basic_fn_title, basic_fn_prefix, basic_fn_suffix, clean_up=False):
|
||||||
|
import gradio as gr
|
||||||
|
from themes.theme import load_dynamic_theme, to_cookie_str, from_cookie_str, assign_user_uuid
|
||||||
|
ret = {}
|
||||||
|
# 读取之前的自定义按钮
|
||||||
|
customize_fn_overwrite_ = cookies_['customize_fn_overwrite']
|
||||||
|
# 更新新的自定义按钮
|
||||||
|
customize_fn_overwrite_.update({
|
||||||
|
basic_btn_dropdown_:
|
||||||
|
{
|
||||||
|
"Title":basic_fn_title,
|
||||||
|
"Prefix":basic_fn_prefix,
|
||||||
|
"Suffix":basic_fn_suffix,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
if clean_up:
|
||||||
|
customize_fn_overwrite_ = {}
|
||||||
|
cookies_.update(customize_fn_overwrite_) # 更新cookie
|
||||||
|
visible = (not clean_up) and (basic_fn_title != "")
|
||||||
|
if basic_btn_dropdown_ in customize_btns:
|
||||||
|
# 是自定义按钮,不是预定义按钮
|
||||||
|
ret.update({customize_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
||||||
|
else:
|
||||||
|
# 是预定义按钮
|
||||||
|
ret.update({predefined_btns[basic_btn_dropdown_]: gr.update(visible=visible, value=basic_fn_title)})
|
||||||
|
ret.update({cookies: cookies_})
|
||||||
|
try: persistent_cookie_ = from_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||||
|
except: persistent_cookie_ = {}
|
||||||
|
persistent_cookie_["custom_bnt"] = customize_fn_overwrite_ # dict update new value
|
||||||
|
persistent_cookie_ = to_cookie_str(persistent_cookie_) # persistent cookie to dict
|
||||||
|
ret.update({web_cookie_cache: persistent_cookie_}) # write persistent cookie
|
||||||
|
return ret
|
||||||
|
return assign_btn
|
||||||
|
|
||||||
|
211
shared_utils/fastapi_server.py
Normal file
211
shared_utils/fastapi_server.py
Normal file
@ -0,0 +1,211 @@
|
|||||||
|
"""
|
||||||
|
Tests:
|
||||||
|
|
||||||
|
- custom_path false / no user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block __pycache__ access(yes)
|
||||||
|
-- rel (yes)
|
||||||
|
-- abs (yes)
|
||||||
|
-- block user access(fail) http://localhost:45013/file=gpt_log/admin/chat_secrets.log
|
||||||
|
-- fix(commit f6bf05048c08f5cd84593f7fdc01e64dec1f584a)-> block successful
|
||||||
|
|
||||||
|
- custom_path yes("/cc/gptac") / no user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block __pycache__ access(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
|
||||||
|
- custom_path yes("/cc/gptac/") / no user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
|
||||||
|
- custom_path yes("/cc/gptac/") / + user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
-- block user-wise access (yes)
|
||||||
|
|
||||||
|
- custom_path no + user auth:
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
-- block user access(yes)
|
||||||
|
-- block user-wise access (yes)
|
||||||
|
|
||||||
|
queue cocurrent effectiveness
|
||||||
|
-- upload file(yes)
|
||||||
|
-- download file(yes)
|
||||||
|
-- websocket(yes)
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os, requests, threading, time
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
def _authorize_user(path_or_url, request, gradio_app):
|
||||||
|
from toolbox import get_conf, default_user_name
|
||||||
|
PATH_PRIVATE_UPLOAD, PATH_LOGGING = get_conf('PATH_PRIVATE_UPLOAD', 'PATH_LOGGING')
|
||||||
|
sensitive_path = None
|
||||||
|
path_or_url = os.path.relpath(path_or_url)
|
||||||
|
if path_or_url.startswith(PATH_LOGGING):
|
||||||
|
sensitive_path = PATH_LOGGING
|
||||||
|
if path_or_url.startswith(PATH_PRIVATE_UPLOAD):
|
||||||
|
sensitive_path = PATH_PRIVATE_UPLOAD
|
||||||
|
if sensitive_path:
|
||||||
|
token = request.cookies.get("access-token") or request.cookies.get("access-token-unsecure")
|
||||||
|
user = gradio_app.tokens.get(token) # get user
|
||||||
|
allowed_users = [user, 'autogen', default_user_name] # three user path that can be accessed
|
||||||
|
for user_allowed in allowed_users:
|
||||||
|
# exact match
|
||||||
|
if f"{os.sep}".join(path_or_url.split(os.sep)[:2]) == os.path.join(sensitive_path, user_allowed):
|
||||||
|
return True
|
||||||
|
return False # "越权访问!"
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
class Server(uvicorn.Server):
|
||||||
|
# A server that runs in a separate thread
|
||||||
|
def install_signal_handlers(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def run_in_thread(self):
|
||||||
|
self.thread = threading.Thread(target=self.run, daemon=True)
|
||||||
|
self.thread.start()
|
||||||
|
while not self.started:
|
||||||
|
time.sleep(1e-3)
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.should_exit = True
|
||||||
|
self.thread.join()
|
||||||
|
|
||||||
|
|
||||||
|
def start_app(app_block, CONCURRENT_COUNT, AUTHENTICATION, PORT, SSL_KEYFILE, SSL_CERTFILE):
|
||||||
|
import uvicorn
|
||||||
|
import fastapi
|
||||||
|
import gradio as gr
|
||||||
|
from fastapi import FastAPI
|
||||||
|
from gradio.routes import App
|
||||||
|
from toolbox import get_conf
|
||||||
|
CUSTOM_PATH, PATH_LOGGING = get_conf('CUSTOM_PATH', 'PATH_LOGGING')
|
||||||
|
|
||||||
|
# --- --- configurate gradio app block --- ---
|
||||||
|
app_block:gr.Blocks
|
||||||
|
app_block.ssl_verify = False
|
||||||
|
app_block.auth_message = '请登录'
|
||||||
|
app_block.favicon_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "docs/logo.png")
|
||||||
|
app_block.auth = AUTHENTICATION if len(AUTHENTICATION) != 0 else None
|
||||||
|
app_block.blocked_paths = ["config.py", "__pycache__", "config_private.py", "docker-compose.yml", "Dockerfile", f"{PATH_LOGGING}/admin"]
|
||||||
|
app_block.dev_mode = False
|
||||||
|
app_block.config = app_block.get_config_file()
|
||||||
|
app_block.enable_queue = True
|
||||||
|
app_block.queue(concurrency_count=CONCURRENT_COUNT)
|
||||||
|
app_block.validate_queue_settings()
|
||||||
|
app_block.show_api = False
|
||||||
|
app_block.config = app_block.get_config_file()
|
||||||
|
max_threads = 40
|
||||||
|
app_block.max_threads = max(
|
||||||
|
app_block._queue.max_thread_count if app_block.enable_queue else 0, max_threads
|
||||||
|
)
|
||||||
|
app_block.is_colab = False
|
||||||
|
app_block.is_kaggle = False
|
||||||
|
app_block.is_sagemaker = False
|
||||||
|
|
||||||
|
gradio_app = App.create_app(app_block)
|
||||||
|
|
||||||
|
# --- --- replace gradio endpoint to forbid access to sensitive files --- ---
|
||||||
|
if len(AUTHENTICATION) > 0:
|
||||||
|
dependencies = []
|
||||||
|
endpoint = None
|
||||||
|
for route in list(gradio_app.router.routes):
|
||||||
|
if route.path == "/file/{path:path}":
|
||||||
|
gradio_app.router.routes.remove(route)
|
||||||
|
if route.path == "/file={path_or_url:path}":
|
||||||
|
dependencies = route.dependencies
|
||||||
|
endpoint = route.endpoint
|
||||||
|
gradio_app.router.routes.remove(route)
|
||||||
|
@gradio_app.get("/file/{path:path}", dependencies=dependencies)
|
||||||
|
@gradio_app.head("/file={path_or_url:path}", dependencies=dependencies)
|
||||||
|
@gradio_app.get("/file={path_or_url:path}", dependencies=dependencies)
|
||||||
|
async def file(path_or_url: str, request: fastapi.Request):
|
||||||
|
if len(AUTHENTICATION) > 0:
|
||||||
|
if not _authorize_user(path_or_url, request, gradio_app):
|
||||||
|
return "越权访问!"
|
||||||
|
return await endpoint(path_or_url, request)
|
||||||
|
|
||||||
|
# --- --- app_lifespan --- ---
|
||||||
|
from contextlib import asynccontextmanager
|
||||||
|
@asynccontextmanager
|
||||||
|
async def app_lifespan(app):
|
||||||
|
async def startup_gradio_app():
|
||||||
|
if gradio_app.get_blocks().enable_queue:
|
||||||
|
gradio_app.get_blocks().startup_events()
|
||||||
|
async def shutdown_gradio_app():
|
||||||
|
pass
|
||||||
|
await startup_gradio_app() # startup logic here
|
||||||
|
yield # The application will serve requests after this point
|
||||||
|
await shutdown_gradio_app() # cleanup/shutdown logic here
|
||||||
|
|
||||||
|
# --- --- FastAPI --- ---
|
||||||
|
fastapi_app = FastAPI(lifespan=app_lifespan)
|
||||||
|
fastapi_app.mount(CUSTOM_PATH, gradio_app)
|
||||||
|
|
||||||
|
# --- --- favicon --- ---
|
||||||
|
if CUSTOM_PATH != '/':
|
||||||
|
from fastapi.responses import FileResponse
|
||||||
|
@fastapi_app.get("/favicon.ico")
|
||||||
|
async def favicon():
|
||||||
|
return FileResponse(app_block.favicon_path)
|
||||||
|
|
||||||
|
# --- --- uvicorn.Config --- ---
|
||||||
|
ssl_keyfile = None if SSL_KEYFILE == "" else SSL_KEYFILE
|
||||||
|
ssl_certfile = None if SSL_CERTFILE == "" else SSL_CERTFILE
|
||||||
|
server_name = "0.0.0.0"
|
||||||
|
config = uvicorn.Config(
|
||||||
|
fastapi_app,
|
||||||
|
host=server_name,
|
||||||
|
port=PORT,
|
||||||
|
reload=False,
|
||||||
|
log_level="warning",
|
||||||
|
ssl_keyfile=ssl_keyfile,
|
||||||
|
ssl_certfile=ssl_certfile,
|
||||||
|
)
|
||||||
|
server = Server(config)
|
||||||
|
url_host_name = "localhost" if server_name == "0.0.0.0" else server_name
|
||||||
|
if ssl_keyfile is not None:
|
||||||
|
if ssl_certfile is None:
|
||||||
|
raise ValueError(
|
||||||
|
"ssl_certfile must be provided if ssl_keyfile is provided."
|
||||||
|
)
|
||||||
|
path_to_local_server = f"https://{url_host_name}:{PORT}/"
|
||||||
|
else:
|
||||||
|
path_to_local_server = f"http://{url_host_name}:{PORT}/"
|
||||||
|
if CUSTOM_PATH != '/':
|
||||||
|
path_to_local_server += CUSTOM_PATH.lstrip('/').rstrip('/') + '/'
|
||||||
|
# --- --- begin --- ---
|
||||||
|
server.run_in_thread()
|
||||||
|
|
||||||
|
# --- --- after server launch --- ---
|
||||||
|
app_block.server = server
|
||||||
|
app_block.server_name = server_name
|
||||||
|
app_block.local_url = path_to_local_server
|
||||||
|
app_block.protocol = (
|
||||||
|
"https"
|
||||||
|
if app_block.local_url.startswith("https") or app_block.is_colab
|
||||||
|
else "http"
|
||||||
|
)
|
||||||
|
|
||||||
|
if app_block.enable_queue:
|
||||||
|
app_block._queue.set_url(path_to_local_server)
|
||||||
|
|
||||||
|
forbid_proxies = {
|
||||||
|
"http": "",
|
||||||
|
"https": "",
|
||||||
|
}
|
||||||
|
requests.get(f"{app_block.local_url}startup-events", verify=app_block.ssl_verify, proxies=forbid_proxies)
|
||||||
|
app_block.is_running = True
|
||||||
|
app_block.block_thread()
|
@ -28,6 +28,11 @@ def is_api2d_key(key):
|
|||||||
return bool(API_MATCH_API2D)
|
return bool(API_MATCH_API2D)
|
||||||
|
|
||||||
|
|
||||||
|
def is_cohere_api_key(key):
|
||||||
|
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{40}$", key)
|
||||||
|
return bool(API_MATCH_AZURE)
|
||||||
|
|
||||||
|
|
||||||
def is_any_api_key(key):
|
def is_any_api_key(key):
|
||||||
if ',' in key:
|
if ',' in key:
|
||||||
keys = key.split(',')
|
keys = key.split(',')
|
||||||
@ -35,7 +40,7 @@ def is_any_api_key(key):
|
|||||||
if is_any_api_key(k): return True
|
if is_any_api_key(k): return True
|
||||||
return False
|
return False
|
||||||
else:
|
else:
|
||||||
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key)
|
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key) or is_cohere_api_key(key)
|
||||||
|
|
||||||
|
|
||||||
def what_keys(keys):
|
def what_keys(keys):
|
||||||
@ -74,8 +79,12 @@ def select_api_key(keys, llm_model):
|
|||||||
for k in key_list:
|
for k in key_list:
|
||||||
if is_azure_api_key(k): avail_key_list.append(k)
|
if is_azure_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
|
if llm_model.startswith('cohere-'):
|
||||||
|
for k in key_list:
|
||||||
|
if is_cohere_api_key(k): avail_key_list.append(k)
|
||||||
|
|
||||||
if len(avail_key_list) == 0:
|
if len(avail_key_list) == 0:
|
||||||
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(右下角更换模型菜单中可切换openai,azure,claude,api2d等请求源)。")
|
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(左上角更换模型菜单中可切换openai,azure,claude,cohere等请求源)。")
|
||||||
|
|
||||||
api_key = random.choice(avail_key_list) # 随机负载均衡
|
api_key = random.choice(avail_key_list) # 随机负载均衡
|
||||||
return api_key
|
return api_key
|
||||||
|
@ -11,7 +11,29 @@ def validate_path():
|
|||||||
|
|
||||||
|
|
||||||
validate_path() # validate path so you can run from base directory
|
validate_path() # validate path so you can run from base directory
|
||||||
if __name__ == "__main__":
|
|
||||||
|
if "在线模型":
|
||||||
|
if __name__ == "__main__":
|
||||||
|
from request_llms.bridge_cohere import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
||||||
|
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
||||||
|
llm_kwargs = {
|
||||||
|
"llm_model": "command-r-plus",
|
||||||
|
"max_length": 4096,
|
||||||
|
"top_p": 1,
|
||||||
|
"temperature": 1,
|
||||||
|
}
|
||||||
|
|
||||||
|
result = predict_no_ui_long_connection(
|
||||||
|
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt="系统"
|
||||||
|
)
|
||||||
|
print("final result:", result)
|
||||||
|
print("final result:", result)
|
||||||
|
|
||||||
|
|
||||||
|
if "本地模型":
|
||||||
|
if __name__ == "__main__":
|
||||||
# from request_llms.bridge_newbingfree import predict_no_ui_long_connection
|
# from request_llms.bridge_newbingfree import predict_no_ui_long_connection
|
||||||
# from request_llms.bridge_moss import predict_no_ui_long_connection
|
# from request_llms.bridge_moss import predict_no_ui_long_connection
|
||||||
# from request_llms.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
# from request_llms.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
|
||||||
@ -20,19 +42,14 @@ if __name__ == "__main__":
|
|||||||
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
# from request_llms.bridge_internlm import predict_no_ui_long_connection
|
||||||
# from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
|
# from request_llms.bridge_deepseekcoder import predict_no_ui_long_connection
|
||||||
# from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
|
# from request_llms.bridge_qwen_7B import predict_no_ui_long_connection
|
||||||
from request_llms.bridge_qwen_local import predict_no_ui_long_connection
|
# from request_llms.bridge_qwen_local import predict_no_ui_long_connection
|
||||||
|
|
||||||
# from request_llms.bridge_spark import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_zhipu import predict_no_ui_long_connection
|
|
||||||
# from request_llms.bridge_chatglm3 import predict_no_ui_long_connection
|
|
||||||
|
|
||||||
llm_kwargs = {
|
llm_kwargs = {
|
||||||
"max_length": 4096,
|
"max_length": 4096,
|
||||||
"top_p": 1,
|
"top_p": 1,
|
||||||
"temperature": 1,
|
"temperature": 1,
|
||||||
}
|
}
|
||||||
|
|
||||||
result = predict_no_ui_long_connection(
|
result = predict_no_ui_long_connection(
|
||||||
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt=""
|
inputs="请问什么是质子?", llm_kwargs=llm_kwargs, history=["你好", "我好!"], sys_prompt=""
|
||||||
)
|
)
|
||||||
print("final result:", result)
|
print("final result:", result)
|
||||||
|
|
||||||
|
130
themes/common.js
130
themes/common.js
@ -2,15 +2,15 @@
|
|||||||
// 第 1 部分: 工具函数
|
// 第 1 部分: 工具函数
|
||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
function push_data_to_gradio_component(DAT, ELEM_ID, TYPE){
|
function push_data_to_gradio_component(DAT, ELEM_ID, TYPE) {
|
||||||
// type, // type==="str" / type==="float"
|
// type, // type==="str" / type==="float"
|
||||||
if (TYPE=="str"){
|
if (TYPE == "str") {
|
||||||
// convert dat to string: do nothing
|
// convert dat to string: do nothing
|
||||||
}
|
}
|
||||||
else if (TYPE=="no_conversion"){
|
else if (TYPE == "no_conversion") {
|
||||||
// no nothing
|
// no nothing
|
||||||
}
|
}
|
||||||
else if (TYPE=="float"){
|
else if (TYPE == "float") {
|
||||||
// convert dat to float
|
// convert dat to float
|
||||||
DAT = parseFloat(DAT);
|
DAT = parseFloat(DAT);
|
||||||
}
|
}
|
||||||
@ -24,7 +24,7 @@ function push_data_to_gradio_component(DAT, ELEM_ID, TYPE){
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
async function get_gradio_component(ELEM_ID){
|
async function get_gradio_component(ELEM_ID) {
|
||||||
function waitFor(ELEM_ID) {
|
function waitFor(ELEM_ID) {
|
||||||
return new Promise((resolve) => {
|
return new Promise((resolve) => {
|
||||||
const myEvent = new CustomEvent('gpt_academic_get_gradio_component_value', {
|
const myEvent = new CustomEvent('gpt_academic_get_gradio_component_value', {
|
||||||
@ -41,14 +41,13 @@ async function get_gradio_component(ELEM_ID){
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
async function get_data_from_gradio_component(ELEM_ID){
|
async function get_data_from_gradio_component(ELEM_ID) {
|
||||||
let comp = await get_gradio_component(ELEM_ID);
|
let comp = await get_gradio_component(ELEM_ID);
|
||||||
return comp.props.value;
|
return comp.props.value;
|
||||||
}
|
}
|
||||||
|
|
||||||
function update_array(arr, item, mode) {
|
|
||||||
// let p = ["基础功能区", "输入清除键", "函数插件区"];
|
|
||||||
|
|
||||||
|
function update_array(arr, item, mode) {
|
||||||
// // Remove "输入清除键"
|
// // Remove "输入清除键"
|
||||||
// p = updateArray(p, "输入清除键", "remove");
|
// p = updateArray(p, "输入清除键", "remove");
|
||||||
// console.log(p); // Should log: ["基础功能区", "函数插件区"]
|
// console.log(p); // Should log: ["基础功能区", "函数插件区"]
|
||||||
@ -85,6 +84,7 @@ function gradioApp() {
|
|||||||
return elem.shadowRoot ? elem.shadowRoot : elem;
|
return elem.shadowRoot ? elem.shadowRoot : elem;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function setCookie(name, value, days) {
|
function setCookie(name, value, days) {
|
||||||
var expires = "";
|
var expires = "";
|
||||||
|
|
||||||
@ -97,6 +97,7 @@ function setCookie(name, value, days) {
|
|||||||
document.cookie = name + "=" + value + expires + "; path=/";
|
document.cookie = name + "=" + value + expires + "; path=/";
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function getCookie(name) {
|
function getCookie(name) {
|
||||||
var decodedCookie = decodeURIComponent(document.cookie);
|
var decodedCookie = decodeURIComponent(document.cookie);
|
||||||
var cookies = decodedCookie.split(';');
|
var cookies = decodedCookie.split(';');
|
||||||
@ -112,6 +113,7 @@ function getCookie(name) {
|
|||||||
return null;
|
return null;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
let toastCount = 0;
|
let toastCount = 0;
|
||||||
function toast_push(msg, duration) {
|
function toast_push(msg, duration) {
|
||||||
duration = isNaN(duration) ? 3000 : duration;
|
duration = isNaN(duration) ? 3000 : duration;
|
||||||
@ -134,6 +136,7 @@ function toast_push(msg, duration) {
|
|||||||
toastCount++;
|
toastCount++;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function toast_up(msg) {
|
function toast_up(msg) {
|
||||||
var m = document.getElementById('toast_up');
|
var m = document.getElementById('toast_up');
|
||||||
if (m) {
|
if (m) {
|
||||||
@ -146,6 +149,7 @@ function toast_up(msg) {
|
|||||||
document.body.appendChild(m);
|
document.body.appendChild(m);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function toast_down() {
|
function toast_down() {
|
||||||
var m = document.getElementById('toast_up');
|
var m = document.getElementById('toast_up');
|
||||||
if (m) {
|
if (m) {
|
||||||
@ -153,6 +157,7 @@ function toast_down() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function begin_loading_status() {
|
function begin_loading_status() {
|
||||||
// Create the loader div and add styling
|
// Create the loader div and add styling
|
||||||
var loader = document.createElement('div');
|
var loader = document.createElement('div');
|
||||||
@ -327,6 +332,7 @@ function do_something_but_not_too_frequently(min_interval, func) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function chatbotContentChanged(attempt = 1, force = false) {
|
function chatbotContentChanged(attempt = 1, force = false) {
|
||||||
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
// https://github.com/GaiZhenbiao/ChuanhuChatGPT/tree/main/web_assets/javascript
|
||||||
for (var i = 0; i < attempt; i++) {
|
for (var i = 0; i < attempt; i++) {
|
||||||
@ -343,7 +349,6 @@ function chatbotContentChanged(attempt = 1, force = false) {
|
|||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
// 第 3 部分: chatbot动态高度调整
|
// 第 3 部分: chatbot动态高度调整
|
||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
function chatbotAutoHeight() {
|
function chatbotAutoHeight() {
|
||||||
// 自动调整高度:立即
|
// 自动调整高度:立即
|
||||||
function update_height() {
|
function update_height() {
|
||||||
@ -375,6 +380,7 @@ function chatbotAutoHeight() {
|
|||||||
setInterval(function () { update_height_slow() }, 50); // 每50毫秒执行一次
|
setInterval(function () { update_height_slow() }, 50); // 每50毫秒执行一次
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
swapped = false;
|
swapped = false;
|
||||||
function swap_input_area() {
|
function swap_input_area() {
|
||||||
// Get the elements to be swapped
|
// Get the elements to be swapped
|
||||||
@ -394,6 +400,7 @@ function swap_input_area() {
|
|||||||
else { swapped = true; }
|
else { swapped = true; }
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function get_elements(consider_state_panel = false) {
|
function get_elements(consider_state_panel = false) {
|
||||||
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
|
var chatbot = document.querySelector('#gpt-chatbot > div.wrap.svelte-18telvq');
|
||||||
if (!chatbot) {
|
if (!chatbot) {
|
||||||
@ -491,6 +498,7 @@ async function upload_files(files) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function register_func_paste(input) {
|
function register_func_paste(input) {
|
||||||
let paste_files = [];
|
let paste_files = [];
|
||||||
if (input) {
|
if (input) {
|
||||||
@ -517,6 +525,7 @@ function register_func_paste(input) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function register_func_drag(elem) {
|
function register_func_drag(elem) {
|
||||||
if (elem) {
|
if (elem) {
|
||||||
const dragEvents = ["dragover"];
|
const dragEvents = ["dragover"];
|
||||||
@ -553,6 +562,7 @@ function register_func_drag(elem) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function elem_upload_component_pop_message(elem) {
|
function elem_upload_component_pop_message(elem) {
|
||||||
if (elem) {
|
if (elem) {
|
||||||
const dragEvents = ["dragover"];
|
const dragEvents = ["dragover"];
|
||||||
@ -582,6 +592,7 @@ function elem_upload_component_pop_message(elem) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function register_upload_event() {
|
function register_upload_event() {
|
||||||
locate_upload_elems();
|
locate_upload_elems();
|
||||||
if (elem_upload_float) {
|
if (elem_upload_float) {
|
||||||
@ -604,6 +615,7 @@ function register_upload_event() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function monitoring_input_box() {
|
function monitoring_input_box() {
|
||||||
register_upload_event();
|
register_upload_event();
|
||||||
|
|
||||||
@ -637,7 +649,6 @@ window.addEventListener("DOMContentLoaded", function () {
|
|||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
// 第 5 部分: 音频按钮样式变化
|
// 第 5 部分: 音频按钮样式变化
|
||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
function audio_fn_init() {
|
function audio_fn_init() {
|
||||||
let audio_component = document.getElementById('elem_audio');
|
let audio_component = document.getElementById('elem_audio');
|
||||||
if (audio_component) {
|
if (audio_component) {
|
||||||
@ -674,6 +685,7 @@ function audio_fn_init() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
function minor_ui_adjustment() {
|
function minor_ui_adjustment() {
|
||||||
let cbsc_area = document.getElementById('cbsc');
|
let cbsc_area = document.getElementById('cbsc');
|
||||||
cbsc_area.style.paddingTop = '15px';
|
cbsc_area.style.paddingTop = '15px';
|
||||||
@ -766,21 +778,6 @@ function limit_scroll_position() {
|
|||||||
// 第 7 部分: JS初始化函数
|
// 第 7 部分: JS初始化函数
|
||||||
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
// -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
|
||||||
|
|
||||||
function GptAcademicJavaScriptInit(LAYOUT = "LEFT-RIGHT") {
|
|
||||||
audio_fn_init();
|
|
||||||
minor_ui_adjustment();
|
|
||||||
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
|
|
||||||
var chatbotObserver = new MutationObserver(() => {
|
|
||||||
chatbotContentChanged(1);
|
|
||||||
});
|
|
||||||
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
|
|
||||||
if (LAYOUT === "LEFT-RIGHT") { chatbotAutoHeight(); }
|
|
||||||
if (LAYOUT === "LEFT-RIGHT") { limit_scroll_position(); }
|
|
||||||
// setInterval(function () { uml("mermaid") }, 5000); // 每50毫秒执行一次
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
function loadLive2D() {
|
function loadLive2D() {
|
||||||
try {
|
try {
|
||||||
$("<link>").attr({ href: "file=themes/waifu_plugin/waifu.css", rel: "stylesheet", type: "text/css" }).appendTo('head');
|
$("<link>").attr({ href: "file=themes/waifu_plugin/waifu.css", rel: "stylesheet", type: "text/css" }).appendTo('head');
|
||||||
@ -817,7 +814,8 @@ function loadLive2D() {
|
|||||||
} catch (err) { console.log("[Error] JQuery is not defined.") }
|
} catch (err) { console.log("[Error] JQuery is not defined.") }
|
||||||
}
|
}
|
||||||
|
|
||||||
function get_checkbox_selected_items(elem_id){
|
|
||||||
|
function get_checkbox_selected_items(elem_id) {
|
||||||
display_panel_arr = [];
|
display_panel_arr = [];
|
||||||
document.getElementById(elem_id).querySelector('[data-testid="checkbox-group"]').querySelectorAll('label').forEach(label => {
|
document.getElementById(elem_id).querySelector('[data-testid="checkbox-group"]').querySelectorAll('label').forEach(label => {
|
||||||
// Get the span text
|
// Get the span text
|
||||||
@ -831,62 +829,24 @@ function get_checkbox_selected_items(elem_id){
|
|||||||
return display_panel_arr;
|
return display_panel_arr;
|
||||||
}
|
}
|
||||||
|
|
||||||
function set_checkbox(key, bool, set_twice=false) {
|
|
||||||
set_success = false;
|
|
||||||
elem_ids = ["cbsc", "cbs"]
|
|
||||||
elem_ids.forEach(id => {
|
|
||||||
document.getElementById(id).querySelector('[data-testid="checkbox-group"]').querySelectorAll('label').forEach(label => {
|
|
||||||
// Get the span text
|
|
||||||
const spanText = label.querySelector('span').textContent;
|
|
||||||
if (spanText === key) {
|
|
||||||
if (bool){
|
|
||||||
label.classList.add('selected');
|
|
||||||
} else {
|
|
||||||
if (label.classList.contains('selected')) {
|
|
||||||
label.classList.remove('selected');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (set_twice){
|
|
||||||
setTimeout(() => {
|
|
||||||
if (bool){
|
|
||||||
label.classList.add('selected');
|
|
||||||
} else {
|
|
||||||
if (label.classList.contains('selected')) {
|
|
||||||
label.classList.remove('selected');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}, 5000);
|
|
||||||
}
|
|
||||||
|
|
||||||
label.querySelector('input').checked = bool;
|
|
||||||
set_success = true;
|
|
||||||
return
|
|
||||||
}
|
|
||||||
});
|
|
||||||
});
|
|
||||||
|
|
||||||
if (!set_success){
|
|
||||||
console.log("设置checkbox失败,没有找到对应的key")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function gpt_academic_gradio_saveload(
|
function gpt_academic_gradio_saveload(
|
||||||
save_or_load, // save_or_load==="save" / save_or_load==="load"
|
save_or_load, // save_or_load==="save" / save_or_load==="load"
|
||||||
elem_id, // element id
|
elem_id, // element id
|
||||||
cookie_key, // cookie key
|
cookie_key, // cookie key
|
||||||
save_value="", // save value
|
save_value = "", // save value
|
||||||
load_type = "str", // type==="str" / type==="float"
|
load_type = "str", // type==="str" / type==="float"
|
||||||
load_default=false, // load default value
|
load_default = false, // load default value
|
||||||
load_default_value=""
|
load_default_value = ""
|
||||||
) {
|
) {
|
||||||
if (save_or_load === "load") {
|
if (save_or_load === "load") {
|
||||||
let value = getCookie(cookie_key);
|
let value = getCookie(cookie_key);
|
||||||
if (value) {
|
if (value) {
|
||||||
console.log('加载cookie', elem_id, value)
|
console.log('加载cookie', elem_id, value)
|
||||||
push_data_to_gradio_component(value, elem_id, load_type);
|
push_data_to_gradio_component(value, elem_id, load_type);
|
||||||
}
|
}
|
||||||
else{
|
else {
|
||||||
if (load_default){
|
if (load_default) {
|
||||||
console.log('加载cookie的默认值', elem_id, load_default_value)
|
console.log('加载cookie的默认值', elem_id, load_default_value)
|
||||||
push_data_to_gradio_component(load_default_value, elem_id, load_type);
|
push_data_to_gradio_component(load_default_value, elem_id, load_type);
|
||||||
}
|
}
|
||||||
@ -897,11 +857,24 @@ function gpt_academic_gradio_saveload(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
async function init_frontend_with_cookies(dark, prompt, live2d) {
|
|
||||||
let searchString = "输入清除键";
|
|
||||||
let bool_value = "False";
|
|
||||||
|
|
||||||
////////////////// darkmode ///////////////////
|
async function GptAcademicJavaScriptInit(dark, prompt, live2d, layout) {
|
||||||
|
// 第一部分,布局初始化
|
||||||
|
audio_fn_init();
|
||||||
|
minor_ui_adjustment();
|
||||||
|
chatbotIndicator = gradioApp().querySelector('#gpt-chatbot > div.wrap');
|
||||||
|
var chatbotObserver = new MutationObserver(() => {
|
||||||
|
chatbotContentChanged(1);
|
||||||
|
});
|
||||||
|
chatbotObserver.observe(chatbotIndicator, { attributes: true, childList: true, subtree: true });
|
||||||
|
if (layout === "LEFT-RIGHT") { chatbotAutoHeight(); }
|
||||||
|
if (layout === "LEFT-RIGHT") { limit_scroll_position(); }
|
||||||
|
|
||||||
|
// 第二部分,读取Cookie,初始话界面
|
||||||
|
let searchString = "";
|
||||||
|
let bool_value = "";
|
||||||
|
|
||||||
|
// darkmode 深色模式
|
||||||
if (getCookie("js_darkmode_cookie")) {
|
if (getCookie("js_darkmode_cookie")) {
|
||||||
dark = getCookie("js_darkmode_cookie")
|
dark = getCookie("js_darkmode_cookie")
|
||||||
}
|
}
|
||||||
@ -916,12 +889,13 @@ async function init_frontend_with_cookies(dark, prompt, live2d) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////// SysPrompt ///////////////////////////
|
// SysPrompt 系统静默提示词
|
||||||
gpt_academic_gradio_saveload("load", "elem_prompt", "js_system_prompt_cookie", null, "str");
|
gpt_academic_gradio_saveload("load", "elem_prompt", "js_system_prompt_cookie", null, "str");
|
||||||
////////////////////// Temperature ///////////////////////////
|
|
||||||
|
// Temperature 大模型温度参数
|
||||||
gpt_academic_gradio_saveload("load", "elem_temperature", "js_temperature_cookie", null, "float");
|
gpt_academic_gradio_saveload("load", "elem_temperature", "js_temperature_cookie", null, "float");
|
||||||
|
|
||||||
////////////////////// clearButton ///////////////////////////
|
// clearButton 自动清除按钮
|
||||||
if (getCookie("js_clearbtn_show_cookie")) {
|
if (getCookie("js_clearbtn_show_cookie")) {
|
||||||
// have cookie
|
// have cookie
|
||||||
bool_value = getCookie("js_clearbtn_show_cookie")
|
bool_value = getCookie("js_clearbtn_show_cookie")
|
||||||
@ -949,7 +923,7 @@ async function init_frontend_with_cookies(dark, prompt, live2d) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
////////////////////// live2d ///////////////////////////
|
// live2d 显示
|
||||||
if (getCookie("js_live2d_show_cookie")) {
|
if (getCookie("js_live2d_show_cookie")) {
|
||||||
// have cookie
|
// have cookie
|
||||||
searchString = "添加Live2D形象";
|
searchString = "添加Live2D形象";
|
||||||
|
@ -48,7 +48,7 @@ adjust_theme, advanced_css, theme_declaration, _ = load_dynamic_theme(get_conf("
|
|||||||
cookie相关工具函数
|
cookie相关工具函数
|
||||||
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
|
||||||
"""
|
"""
|
||||||
def init_cookie(cookies):
|
def assign_user_uuid(cookies):
|
||||||
# 为每一位访问的用户赋予一个独一无二的uuid编码
|
# 为每一位访问的用户赋予一个独一无二的uuid编码
|
||||||
cookies.update({"uuid": uuid.uuid4()})
|
cookies.update({"uuid": uuid.uuid4()})
|
||||||
return cookies
|
return cookies
|
||||||
@ -106,8 +106,8 @@ js_code_for_toggle_darkmode = """() => {
|
|||||||
}"""
|
}"""
|
||||||
|
|
||||||
|
|
||||||
js_code_for_persistent_cookie_init = """(py_pickle_cookie, cookie) => {
|
js_code_for_persistent_cookie_init = """(web_cookie_cache, cookie) => {
|
||||||
return [getCookie("py_pickle_cookie"), cookie];
|
return [getCookie("web_cookie_cache"), cookie];
|
||||||
}
|
}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@ -535,17 +535,13 @@ def on_file_uploaded(
|
|||||||
|
|
||||||
|
|
||||||
def on_report_generated(cookies:dict, files:List[str], chatbot:ChatBotWithCookies):
|
def on_report_generated(cookies:dict, files:List[str], chatbot:ChatBotWithCookies):
|
||||||
# from toolbox import find_recent_files
|
|
||||||
# PATH_LOGGING = get_conf('PATH_LOGGING')
|
|
||||||
if "files_to_promote" in cookies:
|
if "files_to_promote" in cookies:
|
||||||
report_files = cookies["files_to_promote"]
|
report_files = cookies["files_to_promote"]
|
||||||
cookies.pop("files_to_promote")
|
cookies.pop("files_to_promote")
|
||||||
else:
|
else:
|
||||||
report_files = []
|
report_files = []
|
||||||
# report_files = find_recent_files(PATH_LOGGING)
|
|
||||||
if len(report_files) == 0:
|
if len(report_files) == 0:
|
||||||
return cookies, None, chatbot
|
return cookies, None, chatbot
|
||||||
# files.extend(report_files)
|
|
||||||
file_links = ""
|
file_links = ""
|
||||||
for f in report_files:
|
for f in report_files:
|
||||||
file_links += (
|
file_links += (
|
||||||
@ -1009,6 +1005,7 @@ def check_repeat_upload(new_pdf_path, pdf_hash):
|
|||||||
return False, None
|
return False, None
|
||||||
|
|
||||||
def log_chat(llm_model: str, input_str: str, output_str: str):
|
def log_chat(llm_model: str, input_str: str, output_str: str):
|
||||||
|
try:
|
||||||
if output_str and input_str and llm_model:
|
if output_str and input_str and llm_model:
|
||||||
uid = str(uuid.uuid4().hex)
|
uid = str(uuid.uuid4().hex)
|
||||||
logging.info(f"[Model({uid})] {llm_model}")
|
logging.info(f"[Model({uid})] {llm_model}")
|
||||||
@ -1016,3 +1013,5 @@ def log_chat(llm_model: str, input_str: str, output_str: str):
|
|||||||
logging.info(f"[Query({uid})]\n{input_str}")
|
logging.info(f"[Query({uid})]\n{input_str}")
|
||||||
output_str = output_str.rstrip('\n')
|
output_str = output_str.rstrip('\n')
|
||||||
logging.info(f"[Response({uid})]\n{output_str}\n\n")
|
logging.info(f"[Response({uid})]\n{output_str}\n\n")
|
||||||
|
except:
|
||||||
|
print(trimmed_format_exc())
|
||||||
|
4
version
4
version
@ -1,5 +1,5 @@
|
|||||||
{
|
{
|
||||||
"version": 3.73,
|
"version": 3.74,
|
||||||
"show_feature": true,
|
"show_feature": true,
|
||||||
"new_feature": "优化oneapi接入方法 <-> 接入月之暗面模型 <-> 支持切换多个智谱ai模型 <-> 用绘图功能增强部分插件 <-> 基础功能区支持自动切换中英提示词 <-> 支持Mermaid绘图库(让大模型绘制脑图)"
|
"new_feature": "增加多用户文件鉴权验证提高安全性 <-> 优化oneapi接入方法 <-> 接入Cohere和月之暗面模型 <-> 简化挂载二级目录的步骤 <-> 支持Mermaid绘图库(让大模型绘制脑图)"
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user